
République Démocratique du Congo

Ministère du Développement Rural

Projet de Renforcement des Infrastructures Socio-Economiques dans la Région du Centre de la RDC - PRISE

Conception d'un Réseau Optimal de Suivi Hydrométéorologique et Climatique du Bassin Versant de Kasaï

Dr. Raphael M. Tshimanga

Expert Hydrologue Centre de Recherche en Ressources en Eau du Bassin du Congo - CRREBaC

Rapport validé en Juillet 2019

Contenu

Conten	u	2
Liste de	s figures	3
Liste de	s tableaux	4
Abrévia	tions	5
1. Int	roduction	6
1.1	Contexte et justification	6
1.2	Projet de Renforcement des Infrastructures Socio-Economiques dans la Région	du
Centr	e de la RDC - PRISE	7
1.3	Présentation du bassin versant de Kasaï	8
2. App	proche méthodologique de la conception d'un réseau optimal de suivi	
hydrom	nétéorologique	12
2.1	Cadre conceptuel	12
2.2	Inventaire des problèmes du suivi hydrométéorologique dans le BVK	13
2.3	Définition des critères de conception et optimisation du réseau	17
3. Do	nnées disponibles et description des caractéristiques du bassin versant de Kasaï	18
3.1	Les données primaires	18
3.2	Caractéristiques de terrain et occupation de terres	22
3.3	Priorisation et délimitation des unités spatiales des sous bassins	26
4. Cor	nception du Réseau de Suivi Météorologique	28
4.1	Le réseau des stations classiques historiques de suivi météorologique	28
4.2	Le réseau optimal des stations de suivi météorologique	34
4.3	Caractéristiques de la Distribution Spatiale du Réseau de Suivi Météorologique.	
4.4	Scenarios d'optimisation	
4.4.1	and the Management of the second of the seco	
4.4.2	'	
5. Cor	nception du Réseau de Suivi Hydrométrique	
5.1	Le réseau historique de suivi hydrométrique	70
5.2	Statistiques des variables des propriétés physiques	
5.3	Méthode de régionalisation: Classification Hiérarchique par Agglomération	
5.4	Réseau optimal de suivi hydrométrique	
6. Cad	dre de gestion du réseau optimal de suivi hydrométéorologique	
6.1	Cadre Institutionnel	86
6.2	Collecte, stockage, traitement et diffusion	87
6.3	Axes d'Interventions Prioritaires	89
7. Cor	nclusion et recommandations	91
Bibliogr	aphie	94

Liste des figures

Figure 1.	Principaux sous bassins versants du bassin du Congo	9
Figure 2.	Organisation territoriale dans le bassin versant du Kasaï dans sa partie Angolaise et	celle
	de la RDC (tracée épaisse noire: limite des pays, tracée épaisse bleue : limite	
	topographique du BVK, tracée grise légère : limite territoriale)	10
Figure 3.	Cadre conceptuel du développement du ROSHM pour le BVK	12
Figure 4.	Etat des lieux de l'équipement de la station classique de Tshikapa	14
Figure 5.	Etat des lieux de la gestion des données hydrométéorologiques	15
Figure 6.	Distribution spatiale de la Pluie Moyenne Annuelle (mm) Figure 7. Isohyètes de	la
	Pluie Moyenne Annuelle (mm)	19
Figure 8.	Distribution spatiale de la Température Maximale Moyenne Annuelle (oC)	20
Figure 9.	Distribution spatiale de la Température Moyenne Annuelle (oC)	20
Figure 10.	Distribution spatiale de la pression de vapeur saturante Moyenne Annuelle (hPa)	20
Figure 11.	Distribution spatiale de la Température Minimale Moyenne Annuelle (oC)	20
Figure 12.	Distribution spatiale de fraction de l'Insolation Moyenne Annuelle (%)	21
Figure 13.	Distribution spatiale de l'Evapotranspiration Potentielle Moyenne Annuelle (mm)	21
Figure 14.	Distribution spatiale de l'Indice d'Aridité	21
Figure 15.	Distribution spatiale de la vitesse de Vent (km/h)	21
Figure 16.	Classes d'élévation en juxtaposition avec les isohyètes pour les BVK	22
Figure 17.	Présente les types d'occupation de terres pour le BVK	23
Figure 18.	91 unités des sous bassins obtenues en découpant le bassin versant sur la base	de
	gradient d'élévation et de pente	27
Figure 19.	Le réseau des stations classiques historiques de suivi météorologique installées à l'ép	oque
coloniale s	ur le bassin versant du Kasaï	28
Figure 20.	Représentation en en 3D du BVK et de la distribution spatiale des stations historials	iques
Figure 21.	Nuages des points et classes de la distribution spatiale des stations d'observation	n au
	sol (et de la grille d'interpolation) en fonction d'altitude	34
Figure 22.	Distribution spatiale du réseau optimal de suivi météorologique	35
Figure 23.	Gradient altitudinal et distribution spatiale des stations de suivi météorologique	36
Figure 24.	Polygones de Thiessen et leurs superficies pour chaque emplacement des station	าร 37
Figure 25.	Représentation en 3D de la distribution spatiale des stations sur le BVK	47
Figure 26.	Nuages des points et classes de la distribution spatiale des stations d'observation	n 48
Figure 27.	Distribution n spatiale des stations en fonction de la PMA	49
Figure 28a	 Réseau optimal représentant 50 ensembles de stations des caractéristiques simi 59 	laires
Figure 29.	Distribution spatiale des stations limnimétriques installées sur le BVK	71
Figure 30.	Dendrogramme de la classification hiérarchisée pour 91 sous bassins	78
Figure 31.	Distribution spatiale des six unités des sous bassins déduits de la classification	
	hiérarchique par agglomération	80
Figure 32.	Réseau Optimal de suivi hydrométrique pour le BVK	81

Liste des tableaux

Tableau 1.	Caractéristiques spatiales et la moyenne annuelle des variables climatiques pour	
	chaque station retenue	38
Tableau 2.	Résumé des caractéristiques spatiales et statistiques des stations en fonction des	
	classes d'altitude	48
Tableau 3.	Propriétés Station	48
Tableau 4.	Propriétés Grille	49
Tableau 5.	Caractéristiques spatiales et statistiques par station	50
Tableau 6.	Priorisation des stations par sous bassins	67
Tableau 7.	Nombre des stations hydrométriques installées et opérationnelles sur le BVK	70
Tableau 8.	Répertoire des stations hydrologiques de la CTB (source : RVF)	72
Tableau 9.	Statistiques des variables des propriétés physiques	73
Tableau 10.	Matrice de proximité des unités des sous bassins versants (un échantillon de 25 su	ır 91
	unités de sous bassins versants est ici présenté)	74
Tableau 11.	Matrice de proximité des variables physiques	75
Tableau 12.	Les groupes des sous-bassins homogènes déduits de la classification hiérarchique p	ar
	agglomération	79
Tableau 13.	Caractéristiques spatiales et géométriques des anciennes stations de suivi	
	hydrométrique sur le BVK	82
Tableau 14.	Caractéristiques spatiales et géométriques des nouvelles stations de suivi	
	hydrométrique sur le BVK identifiées sur la base de la CHA [Priorité : observation	
	synoptique]	84
Tableau 15.	Caractéristiques spatiales et géométriques des nouvelles stations de suivi	
	hydrométrique additionnelles identifiées sur la base des usages spécifiques	85
Tableau 16.	Rôles et responsabilités des institutions du suivi hydrométéorologique en RDC	87

Abréviations

ADCP : Accoustic Doppler Current Profiler

BAD : Banque Africaine de Développement

BVK: Bassin Versant du Kasaï

CCNUCC: Convention Cadre des Nations Unies sur le Changement Climatique
CICOS: Commission Internationale du Bassin du Congo-Oubangui-Sangha
CRREBaC: Centre de Recherche en Ressources en Eau du Bassin du Congo

CRU: Climate Research Unit

FAO: Food and Agricultural Organisation GHCN: Global Historical Climate Network

GIRE: Gestion Intégrée des Ressources en Eau

GRDC: Global Runoff Data Center

GSN: Réseau d'Observation en Surface GUAN: Réseau d'Observation en Altitude

ICCN: Institut Congolais de Conservation de la Nature

INEAC: Institut National pour l'Etude Agronomique au Congo

INERA: Institut National pour les Etudes et la Recherche Agronomique

IRCB: Institut Royal Colonial Belge

MESA: Monitoring of Environment for Security in Africa METTELSAT: Météorologie et Télédétection par Satellite OMM: Organisation Mondiale de la Météorologie

ONRD : Office National pour la Recherche et le Développement

PHE: Potentiel Hydro Electrique

PNUD : Programme des Nations Unies pour le Développement

PRISE : Projet de Réhabilitation des Infrastructures Socio-Economiques

PTM: Projet de Transport Multimodal

RBCN: Réseaux Régionaux Climatologiques de Base
RBSN: Réseaux Régionaux Synoptiques de Base
RDC: République Démocratique du Congo
REGIDESO: Régie de Distribution d'Eau Potable

ROSHM: Réseau Optimal de Suivi Hydrométéorologique

RVF: Régie des Voies Fluviales

SHMN: Services Hydrologiques et Météorologiques Nationaux

SMOC : Système Mondial d'Observation du Climat

SNHR: Service National d'Hydraulique Rural

UNIKIN : Université de Kinshasa ZSR : Zones de Sante Rurale

1. Introduction

1.1 Contexte et justification

La planification et la gestion des ressources en eau d'un bassin versant exigent l'information hydrologique à l'échelle spatiale et temporelle appropriée. L'information hydrologique se réfère à la magnitude, fréquence et la durée des caractéristiques des processus hydrologiques telles que la distribution de ruissèlements dans l'espace et le temps, le régime d'humidité des sols et la recharge des aquifères, les écoulements de base, les variations saisonnières, les événements extrêmes, les processus des transports, les relations pluie-débits, les prévisions continues, etc.

L'hydrométrie constitue une discipline qui s'occupe de la mesure et du suivi des composantes du cycle hydrologique, y compris les précipitations, les eaux de surface et les eaux souterraines (Boiten, 2000). Par conséquent, un réseau hydrométrique est composé d'un groupe de stations (jauges) qui sont conçues et exploitées pour répondre à un objectif unique ou à un ensemble d'objectifs compatibles (OMM, 1994). Toutefois, en pratique, les termes réseau météorologique ou climatologique, hydrométrique, et piézométrique sont utilisés pour différencier les mesures des variables météorologiques ou climatiques, les variables d'eau de surface et celles d'eau souterraine. Dans le cadre de cette étude, le terme utilisé est celui du réseau hydrométéorologique, se référant ainsi aux variables météorologiques ou climatiques et celles des eaux de surface. Le réseau hydrométrique peut être établit pour le suivi quantitatif et qualitatif des ressources en eau. Cette étude se limite au réseau de suivi quantitatif.

Les informations hydrométriques collectées sur un bassin versant sont nécessaires à la conception de différents projets des ressources en eau tels que la construction des réservoirs, les systèmes de distribution d'eau, les réseaux d'irrigation, les études d'impacts du changement climatique sur les ressources en eau, etc. Les utilisateurs de ces informations sont nombreux et incluent les Hydrologues, Agronomes, Climatologues, Hydrogéologues, Gestionnaires et Planificateurs des ressources en eau, Chercheurs de nombreuses organisations et Décideurs dans les secteurs public et privé. Par exemple, les gestionnaires des ressources en eau s'occupent de l'exploitation des réservoirs, ce qui peut inclure la production hydroélectrique, l'approvisionnement en eau et la gestion des inondations et sécheresses. Un réseau conçu de manière adéquate devrait être capable de fournir des informations appropriées aux différents utilisateurs. Le type de données à collecter devrait être basé sur les besoins et l'intervalle de temps approprié des variables observées (par exemple, des données horaires pour la prévision des crues et données mensuelles pour l'évaluation du bilan). La conception d'un réseau répond aux questions suivantes, en rapport avec la collecte des données hydrologiques :

- Quelles variables hydrologiques faut-il observer?
- Où doivent-elles être observées ?

- À quelle fréquence doivent-elles être observées ?
- Quelle doit être la durée du programme d'observation ?
- Quelle exactitude doivent avoir les observations ?

L'importance géostratégique et environnementale du Bassin du Congo en général, et de ses grands sous-ensembles comme celui du Kasaï en particulier, a été mise en évidence dans plusieurs études (e.g. Tshimanga et Hughes 2012, 2014) qui, par ailleurs, ont toutes souligné la nécessité et l'urgence de contribuer au développement d'un système d'information hydrologique cohérent pour une gestion durable des ressources en eau. Peuvent être énumérés comme défis à ce vœu, le manque d'une base des données cohérente, l'incertitude dans l'information existante, et le manque des capacités adéquates pour faire face aux difficultés de gestion des ressources en eau. Aux difficultés sus-mentionnées, il y a lieu d'ajouter la complexité des processus hydrodynamiques du bassin et les conditions sociopolitiques instables.

Par conséquent, l'auteur de ce rapport et consultant hydrologue tient compte des tous ces défis relevés pour le développement d'un réseau optimal de suivi hydrométéorologique (ROSHM) dans le bassin versant du Kasaï. Un réseau optimal de suivi hydrométéorologique est celui qui permet de maximiser la mise en valeur de la gestion des ressources en eau, compte tenu du niveau général de développement économique et des besoins environnementaux. Ce réseau fournira le cadre de développement futur permettant de répondre aux besoins d'information sur la dynamique des ressources en eau, les usages spécifiques de l'eau, et les évènements extrêmes.

1.2 Projet de Renforcement des Infrastructures Socio-Economiques dans la Région du Centre de la RDC - PRISE

Le Gouvernement de la République Démocratique du Congo a reçu un financement du Groupe de la Banque Africaine de Développement (BAD) pour financer le Projet de Renforcement des Infrastructures Socio-économiques dans la Région du Centre (PRISE).

PRISE couvre l'une de cinq zones prioritaires de développement définies dans le programme du Gouvernement et concerne les deux anciennes provinces du Kasaï actuellement subdivisées en cinq nouvelles Provinces (le Kasaï, le Kasaï Central, le Kasaï Oriental, le Lomami et le Sankuru). Ces provinces comptent une population d'environ 8.207.041 habitants, soit 12% de la population globale de la RDC. Ce secteur correspond en grande partie au sous-bassin hydrologique de la rivière du Kasaï, l'un des principaux affluents du Fleuve Congo.

Les principales composantes du PRISE sont :

- Infrastructures d'AEPA (Approvisionnement en Eau Potable et Assainissement), sanitaires et scolaires ;
- Etudes et renforcement des capacités ;
- Coordination et gestion du projet.

Les principales réalisations attendues par le Projet sont :

- La réalisation de 60 mini-systèmes d'AEP dans des agglomérations rurales de 10000 à 20000 habitants, la réhabilitation et l'extension du réseau d'AEP de la ville de Mbuji-Mayi;
- La construction de 60 centres de santé, 60 écoles publiques, 494 latrines publiques et d'un Centre multifonctionnel Genre de Mbuji-Mayi;
- Le suivi/contrôle des travaux;
- La mise en place et la formation de 60 associations d'usagers de l'eau (ASUREP) pour la gestion de 60 mini-réseaux;
- Le renforcement des capacités des ministères impliqués dans les activités du projet;
 Le renforcement des capacités des femmes pour le développement des activités génératrices des revenus;
- Le renforcement des capacités des acteurs locaux.

Le Projet garantira l'atteinte des objectifs du PEASU à travers:

- L'installation de groupes électrogènes pour assurer le fonctionnement du système d'AEP de Tshikapa pendant une année à partir de son achèvement ;
- L'élaboration d'une étude pour la réalisation d'une centrale hydro-électrique en vue d'une solution durable à la question de l'énergie du système d'AEP de Tshikapa;
- La réalisation d'une étude pour la mise en place d'un réseau pilote de suivi des ressources en eau du sous-bassin de la rivière Kasaï;
- L'appui à la réforme du secteur AEPA et la vulgarisation du PNAEPA en milieu rural de la RDC.

Une partie de ce fonds sera utilisée pour financer la réalisation d'une étude de mise en place d'un réseau pilote pour le suivi des ressources en eau du sous-bassin de la rivière du Kasaï, compte tenu de l'importance des ressources en eau de ce bassin pour le développement socio-économique de la région notamment en ce qui concerne l'approvisionnement en eau potable, le développement agricole, l'exploitation du potentiel hydroélectrique et aussi afin de pouvoir prévenir contre les inondations en vue de la protection des populations et de leur bien.

1.3 Présentation du bassin versant de Kasaï

La description détaillée du bassin versant du Kasaï a été faite dans le rapport sur « *l'Etat des Lieux du suivi hydrométéorologique du bassin versant du Kasaï* ». Cependant, quelques illustrations sont reprises dans le présent rapport pour étayer la compréhension de l'approche méthodologique. La Figure 1 présente le Bassin Versant du Kasaï (BVK, sous bassin hachuré), un de grands sous bassins du fleuve Congo, avec une superficie d'environ 900 000 km² à son exutoire.

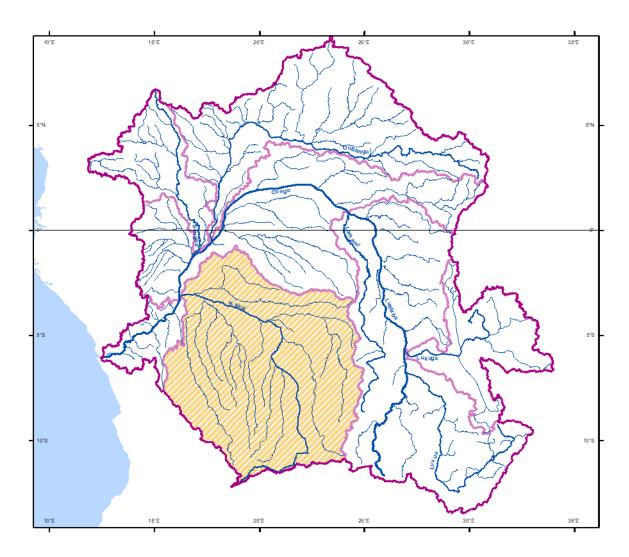
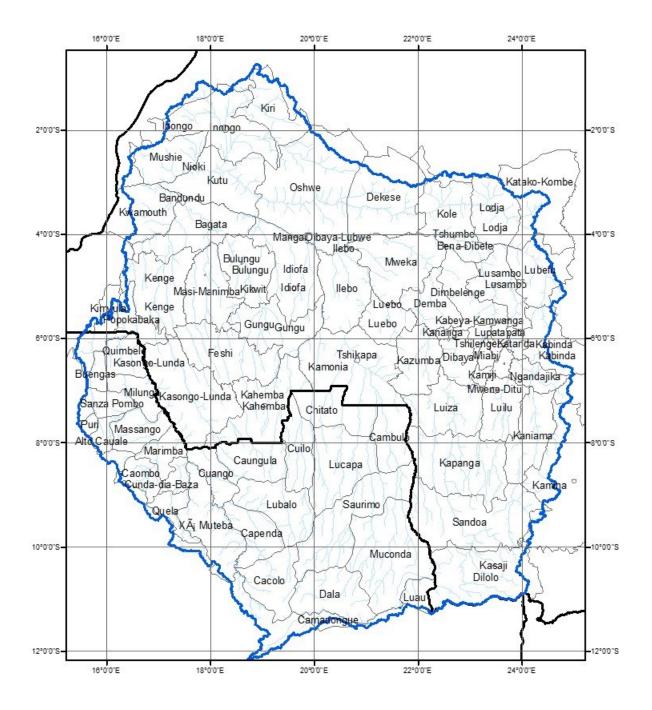



Figure 1. Principaux sous bassins versants du bassin du Congo

La pluie moyenne annuelle sur le bassin versant est estimée à 1540 mm et le volume d'eau annuel à l'exutoire à 330 * 10⁹ m³. Le coefficient d'écoulement est de 25%, ce qui présente une bonne stabilité hydrologique et un potentiel élevé pour appuyer les activités de développement socio-économique à une grande échelle. Il est le deuxième plus grand sous bassin du fleuve Congo en termes de superficie et du volume annuel d'écoulement généré à son exutoire.

Sur le plan administratif, le BVK s'étend sur deux pays, la République d' Angola et la RDC. La Figure 2 montre les limites territoriales de partage géographique du bassin versant et les entités territoriales.

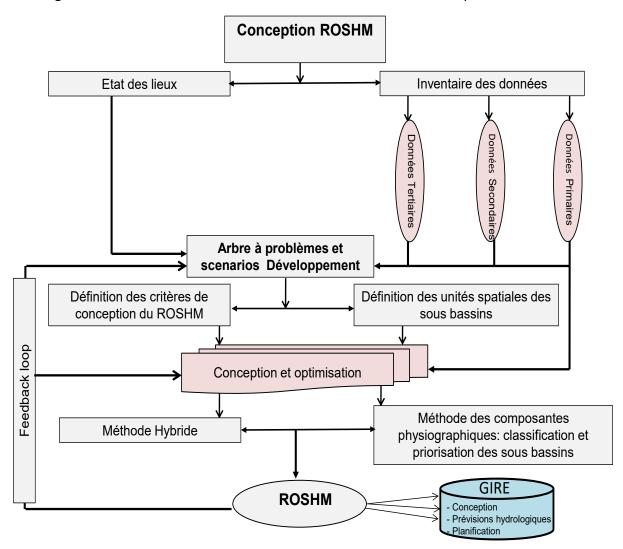
Organisation territoriale dans le bassin versant du Kasaï dans sa partie Angolaise et celle de la RDC (tracée épaisse noire: limite des pays, tracée épaisse bleue : limite topographique du BVK, tracée grise légère : limite territoriale).

La rivière Kasaï est la plus importante qui draine le bassin versant sur une distance d'environ 2000 km, tirant sa source des montagnes Angolaises sur la crête des bassins du Congo et de Zambèze. Les affluents majeurs de la rivière Kasaï comprennent les rivières Kwilu, Kwango, Loange, Lulua, Sankuru, Fimi, Lubefu, Lubilash, Bushimaie, Miao, Lukenie et Tshikapa. Le court tronçon du Kasaï de l'entrée de Fimi à sa confluence avec le fleuve Congo, et est connu

sous le nom de la rivière Kwa. La rivière Kasaï est utilisée pour le transport fluvial depuis le fleuve Congo à Kwamouth, sur la partie appelée Kwa jusqu'à Mushie et ensuite sur le Kasaï jusqu'à llebo et Djoko-Punda. Une ligne de chemin de fer avait été installée pour relier Djoko-Punda à Makumbi. De Makumbi, la rivière est à nouveau navigable jusqu'à au sud de Tshikapa. Ils facilitent le secteur des transports et forment une artère commerciale importante au développement socio-économique des régions du Grand Kasaï et de l'ancienne province de Bandundu (PNUD, 2009). Le rôle de la rivière Kasaï dans le transport et le commerce était plus important même bien avant l'époque coloniale où la traite des esclaves était légale. Les marchands d'esclaves ont utilisé l'un de ses principaux affluents, la rivière Kwango, pour naviguer dans la forêt équatoriale, capturer des esclaves et retrouver leur chemin vers l'océan Atlantique où ils avaient accosté leurs navires (De Rover, 1960). Le bassin versant du Kasaï se trouve sur une région géographiquement enclavée dans le centre du pays, et pauvre malgré ses multiples ressources en sol et sous-sol. L'aménagement des voies navigables, le développement de l'hydro-électricité et l'agriculture irriguée constituent la stratégie de développement des ressources en eau à mettre en œuvre pour accélérer le développement socioéconomique dans la région du bassin versant du Kasaï.

Selon une étude de PNUD (2009) réalisée sur les deux provinces qui représentaient le Grand Kasaï bien avant le découpage actuel, à savoir le Kasaï Occidental et le Kasaï Oriental, la population était estimée à près de 9,1 millions d'habitants en 2005, soit 16,1 % de la population nationale de la RDC, avec un taux de croissance de 3,3% et une densité moyenne 28 hab. /km², légèrement supérieure à la moyenne nationale de 24 hab. /km². Toutefois, il faut associer à cette estimation les populations des autres provinces, aussi bien de la RDC que de l'Angola, qui se trouvent sur le BVK.

La région du BVK figure parmi les rares provinces de la RDC où la quasi-totalité des ménages n'a pas accès à l'électricité. Le taux de raccordement à l'électricité y est de 0,8% contre 10,3% au niveau national. La majorité des ménages de cette province ne disposent pas non plus de robinet dans leurs parcelles. L'accès à ces deux biens publics reste donc très difficile pour les ménages. La région connaît d'énormes problèmes dans le secteur de l'énergie, de l'eau et de l'assainissement. Cette situation résulte essentiellement de l'insuffisance des infrastructures, elle-même due à des investissements limités dans le secteur surtout au regard de l'évolution de la population.


La grande activité lucrative dans la région est l'exploitation des minerais tels que le diamant et l'or, dont les pratiques d'exploitation artisanale ont des conséquences majeures sur les ressources en eau de surface et souterraine.

2. Approche méthodologique de la conception d'un réseau optimal de suivi hydrométéorologique

2.1 Cadre conceptuel

La Figure ci-après illustre le schéma de conceptualisation et optimisation du réseau hydrométéorologique dans le BVK. La littérature présente un éventail des méthodes couramment utilisées à la conceptualisation et optimisation du réseau hydrométéorologique, notamment les méthodes statistiques, méthodes basées sur la théorie de l'information, approche de l'enquête auprès des utilisateurs, méthode hybride, composantes physiographiques, et les stratégies d'échantillonnage. Toutes ces méthodes ont leurs avantages et inconvénients.

La méthode hybride et celle des composantes physiographiques sont ici adoptées pour la conceptualisation et optimisation du réseau hydrométéorologique dans le BVK, et ont pour avantage de balancer les forces et les faiblesses des autres méthodes précitées.

Figure 3. Cadre conceptuel du développement du ROSHM pour le BVK.

La méthode hybride explore l'avantage de méthodes individuelles ou une combinaison des méthodes en utilisant les sorties d'une méthode comme entrée dans une autre méthode afin d'optimiser la conception du réseau. Par exemple, le problème peut consister à minimiser une fonction objective qui comprend à la fois la précision de l'estimation moyenne surfacique (exprimée par l'estimation de la variance de kriging) et le coût économique de la collecte de données. Ce problème peut être résolu en utilisant le kriging pour la réduction de la variance alors que l'optimisation peut être utilisée pour l'analyse de réduction des coûts. D'autres possibilités peuvent être (1) intégrer la technique de conception de réseau avec le System d'Information Géographique pour mieux comprendre le nombre ainsi que les emplacements spatiaux des stations à utiliser dans un bassin et (2) comparer différents scénarios des réseaux avec une combinaison de différents modèles hydrologiques pour les prédictions d'écoulement, étude d'étiages et de crues. En faisant ces analyses, différents ensembles de réseaux peuvent être identifiés pour atteindre un objectif particulier ou un ensemble d'objectifs.

L'approche des composantes physiographiques a un avantage particulier d'aider à la classification et priorisation des sous bassins selon leurs caractéristiques physiographiques intrinsèque et est appropriée pour les bassins versants non jauges tel que celui du Kasaï.

Le type des produits hydrologiques en rapport avec le réseau hydrométéorologique sera un system d'information hydrologique à même de contribuer à produire les caractéristiques des moyennes à long terme, caractéristiques journalières, mensuelles, saisonnières et décadaires, et les caractéristiques interannuelles. Différentes cartes d'information hydrologique en rapport avec les données secondaires et tertiaires devront aussi être produites.

Les données hydrologiques sont utilisées dans la conception, modélisation, et planification des ressources en eau. Ceci implique des chercheurs, planificateurs et praticiens à différents niveaux. Un bon system de dissémination devra ainsi être mis en place pour permettre l'accès facile aux données et aussi favoriser le feedback pour une éventuelle amélioration du system d'information hydrologique. Il est largement reconnu que la majeure partie d'erreurs dans les prévisions hydrologiques proviennent de la collecte, traitement et analyse des données. Ces erreurs peuvent être parfois énormes et par conséquent constituer des risques d'une ampleur inimaginable à la gestion des ressources en eau. L'analyse d'incertitudes est donc primordiale pour minimiser, si pas éviter, ces erreurs qui sont inhérentes au processus d'information hydrologique. Par conséquent, un feedback est inclus dans le processus et devra contribuer à l'amélioration des techniques et connaissances de collecte et analyse des données. Le bon traitement des données permettra alors une utilisation pour la conception des systèmes des ressources en eau, la modélisation et prévisions hydrologiques, et la planification.

2.2 Inventaire des problèmes du suivi hydrométéorologique dans le BVK

De la description de « l'Etat des Lieux du suivi hydrométéorologique du bassin du Kasaï », il peut être retenu que les services hydrométéorologiques sont confrontés à plusieurs problèmes d'ordre technique, institutionnel et financier pour une gestion opérationnelle adéquate du réseau hydrométéorologique. La majorité de l'équipement

hydrométéorologique est acquise depuis l'époque coloniale, se trouve en état de vétusté, ne subit pas d'étalonnage et est sujet d'actes de vandalisme (figures ci-après). La quasi-totalité d'équipement acquis lors de l'époque coloniale n'est plus opérationnel suite à une multitude de problèmes de fonctionnement, notamment, les moyens financiers limités, l'insuffisance du personnel qualifié et la gestion inadéquate des données, incluant les méthodes d'acquisition, transmission, traitement et diffusion.

Figure 4. Etat des lieux de l'équipement de la station classique de Tshikapa

Figure 5. Etat des lieux de la gestion des données hydrométéorologiques

Les problèmes majeurs ayant trait à la gestion hydrométéorologique sur le BVK peuvent se résumer en termes de points énumérés ci-après, qui se révèlent transversaux à tous les problèmes précités.

- Déclin significatif de la densité du réseau existant
- Manque ou peu de conscientisation sur la valeur de l'information hydrométéorologique;

- Insuffisance des cadres qualifiés et compétents;
- Absence d'une vision à long terme de planification et gestion des ressources en eau;
- Cadre institutionnel inadéquat;
- Absence de recherche.

De ceci, une analyse de Force, Faiblesse, Opportunités et Menaces est présentée ci-après :

Force

- Existence d'un réseau hydrographique dense
- Existence d'un potentiel humain jeune et capable de relever les défis
- Existence d'un réseau hydrométrique hérité de l'époque coloniale
- L'adoption de la loi et politique nationale de l'eau par le parlement

Faiblesse

- L'insuffisance des capacités techniques;
- Etat critique de dégradation des infrastructures;
- Absence de budget conséquent;
- Carence de personnels qualifiés;
- Manque de production des bulletins hydrologiques et/ou météorologique par les SHMN;

Opportunités

- Prise de conscience grandissante sur les l'importance à gérer les ressources en eau due aux défis de changement climatiques et autres questions liées au transfert de l'eau entre bassin et développement des ouvrages hydroélectriques;
- Fréquence des catastrophes d'origine hydrométéorologique;
- Projets de gestion des eaux devant favoriser le processus de suivi du réseau hydrométéorologique (Projet PRISE/BAD)
- Projet d'appui à la navigabilité des voies fluviales et lacustres en RDC : réhabilitation de 110 stations d'observation dont 21 équipées des appareils de télémesure (Union Européenne);
- Projet de Transport Multimodal (PTM); des stations d'observations notamment celles du bief supérieur (Banque Mondiale);
- Projet MESA (ex. AMESD): Antenne de réception des informations environnementales via satellite (CICOS/Union Européenne/CRREBaC/UNIKIN);
- Développement des TIC comme une opportunité pour faciliter le travail des SHMN.

Menaces

- Instabilité politique;
- Recrudescence des conflits armés dans la région du BVK;
- Instabilité institutionnelle ;

- Manque de la transparence dans la gestion publique;
- Changements climatiques et leurs coralliaires sur les ressources en eau;
- Risques des catastrophes et épidémie;
- Conditions de travail peu attractives entrainant des fuites de cerveaux;
- Niveau élevé de pauvreté qui est un facteur propice au vandalisme des équipements hydrométéorologiques.

2.3 Définition des critères de conception et optimisation du réseau

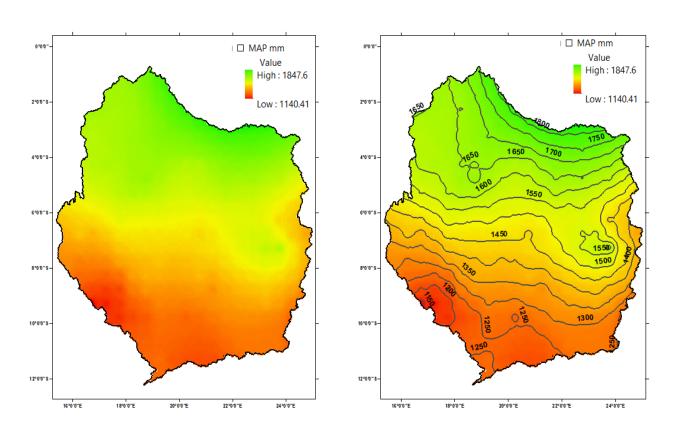
Les critères ci-après sont retenus pour la conception du ROSHM:

- Les processus hydrologiques dominants et les tendances de variabilité hydroclimatique
- Les usages et le développement des ressources en eau
 - Agglomérations urbaines
 - Périmètres ou potentiel d'irrigation
 - Sites ou Potentiel hydroélectrique
 - Biefs navigables
 - Zones minières
- Evènements extrêmes
- Accessibilité
- Sites des mesures au sol existants

3. Données disponibles et description des caractéristiques du bassin versant de Kasaï

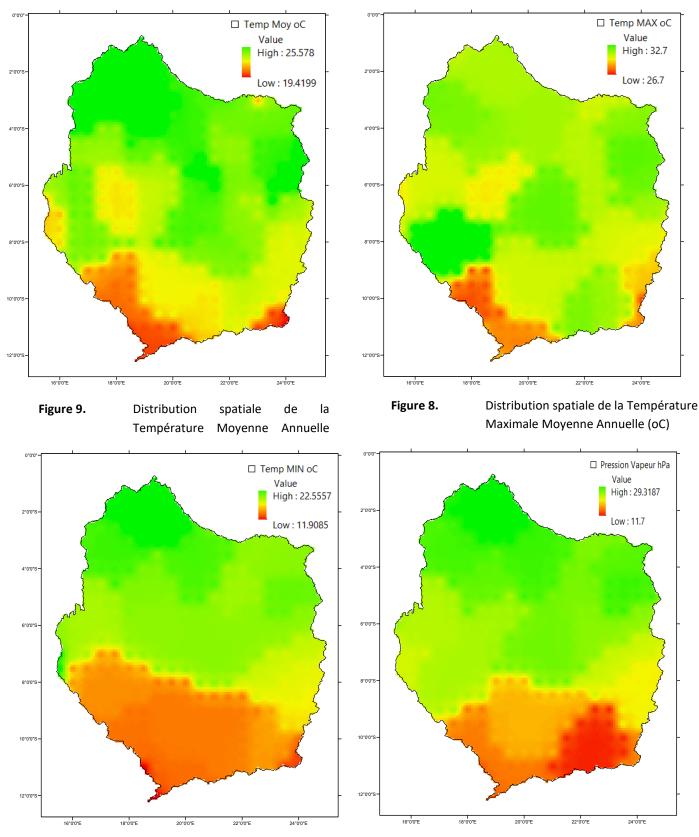
La valeur des observations pouvant s'appuyer sur des recherches expérimentales et des données de terrain a été reconnue et implicitement acceptée dans le développement de la compréhension qualitative en hydrologie (Clark et al., 2011; McMillan et al., 2011). Ces auteurs ont insisté sur l'intérêt des mesures et des observations de terrain pour mieux comprendre les processus dominants de la réponse hydrologique du bassin versant. Développer une telle compréhension reste un défi dans les grands bassins hydrographiques tels que celui du Kasaï, où la recherche expérimentale est entravée par des problèmes liés à l'échelle, aux coûts, à l'expertise et à la complexité des processus naturels. Les récents développements en matière de collecte de données, utilisant des technologies de télédétection, ont permis de mieux comprendre les processus hydrologiques du bassin à des échelles temporelles et spatiales plus fines, augmentant ainsi la confiance en la compréhension et la conceptualisation des processus. L'application de ces techniques innovantes a un impact indéniablement positif sur la disponibilité des données, qui peut être utilisée pour maximiser les informations probables contenues dans les caractéristiques du paysage et améliorer la connaissance des interactions et des relations fonctionnelles de diverses caractéristiques physiographiques et climatiques, ainsi que pour découvrir de nouvelles théories des processus hydrologiques du bassin.

La capacité de prédire la réponse hydrologique dans différentes conditions spatiales et temporelles, notamment la stationnarité et la non-stationnarité, est au cœur de l'évaluation hydrologique. Une description de la dynamique des processus surface-sol et sous-surface atmosphère-sol est essentielle à la réussite des prévisions. Les principaux éléments de cette dynamique comprennent le climat, la morphologie du terrain, la couverture terrestre, la géologie et l'hydrogéologie, qui seront tous explorés dans les sections suivantes.


Cette partie du rapport tente d'explorer les ensembles de données globales, régionales et locales disponibles sur les caractéristiques climatiques et physiographiques du bassin, y compris les recherches antérieures entreprises dans le bassin, dans le but de construire une compréhension qualitative préliminaire des processus hydrologiques du bassin pour des décisions éclairées sur la conception et l'optimisation du ROSHM.

3.1 Les données primaires

Les données primaires sont composées des séries temporelles des variables hydrologiques telles que niveau d'eau et débits liquides, précipitations, températures de l'air, régime de vent et insolation. Elles peuvent être obtenues des stations de jaugeage établies sur le bassin depuis l'époque coloniale, aussi bien des bases des données des systèmes d'observations environnementales à l'échelle régionale ou globale. Alors que ces dernières offrent une bonne opportunité des données plus récentes avec une bonne couverture spatio-temporelle, il y a


lieu d'admettre que leur validation est encore sujet de grandes incertitudes, spécialement pour les bassins tels que celui du Kasaï où quelques expérimentations conduites ont exhibé un signal erroné (e.g Yin and Grubber, 2009). Dans ce contexte, tel que détaillé dans le rapport de l'Etat des Lieux, les efforts ont été en premier lieu être fournis pour inventorier les données enregistrées depuis l'époque coloniale, faire l'état de lieu des stations d'enregistrement des données et fournir une liste des besoins pour la maintenance des stations existantes aussi bien qu' identifier des sites potentiels pour l'implantation des nouvelles stations. Hormis les sources locales, il y a lieu d'énumérer les archives internationales telles que FAO, CRU, GHCN, GRDC, SIEREM, Musée Royal Belge, etc. Ces sources ont dès lors été identifiées afin d'en obtenir des données historiques. La section 3 du rapport sur l'Etat des Lieux du suivi hydrométéorologique dans le bassin versant du Kasaï nous a donc permis de mettre en exergue la situation des données des quelques stations météorologiques et hydrométriques. Cependant, ceci ne constitue qu'une petite portion des données historiques des centaines des stations qui ont été implantées sur le bassin depuis l'époque coloniale. Il y a donc lieu d'enrichir la liste existante et d'inventorier l'état actuel des toutes les stations identifiées.

Les Figures ci-après (6-15) présentent les caractéristiques de la distribution spatiale des moyennes annuelles des variables climatiques du bassin versant du Kasaï.

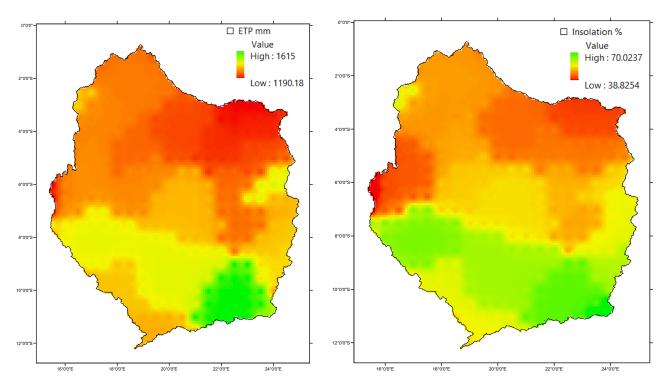

Figure 6. Distribution spatiale de la Pluie Moyenne Annuelle (mm)

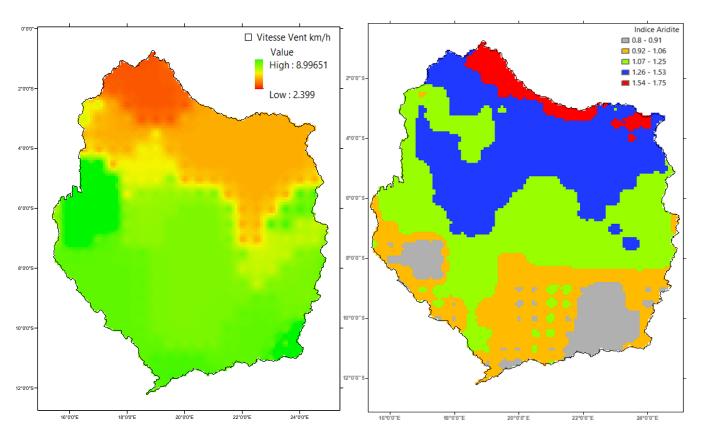
Figure 7. Isohyètes de la Pluie Moyenne Annuelle (mm)

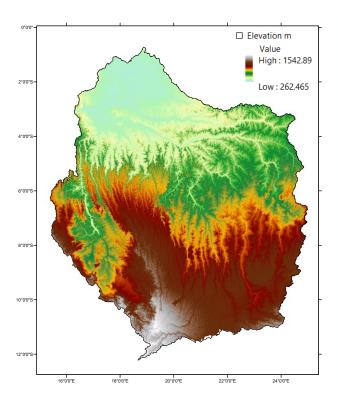
Figure 11. Distribution spatiale de la Température Minimale Moyenne Annuelle (oC)

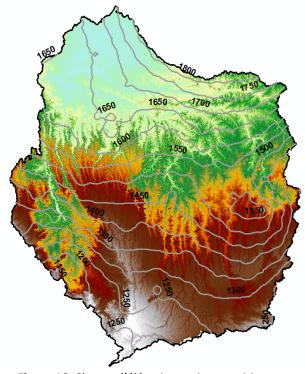
Figure 10. Distribution spatiale de la pression de vapeur saturante Moyenne Annuelle (hPa)

Figure 13. Distribution spatiale de l'Evapotranspiration Potentielle Moyenne Annuelle (mm)

Figure 12. Distribution spatiale de fraction de l'Insolation Moyenne Annuelle (%)




Figure 14. Distribution spatiale de la vitesse de Vent (km/h)


Figure 14. Distribution spatiale de l'Indice d'Aridité

3.2 Caractéristiques de terrain et occupation de terres

Les propriétés physiques d'un bassin versant en conjonction avec les climats prévalant sont nécessaires pour dériver ces informations par les moyens d'expérimentations sur terrain, modélisation hydrologique, approches statistiques ou autres approches conventionnelles. A part les données primaires, nous avons des données secondaires qui sont faites des propriétés physiques du bassin (caractéristiques morpho-métriques, propriétés des aquifères, types des couvertures des terres, etc.). Ces données sont très importantes dans le processus de l'information hydrologique d'un bassin versant et peuvent être obtenues des expérimentations sur terrain. Actuellement, plusieurs bases des données des systèmes d'observations de terrain existent à l'échelle globale et devront être évaluées à cette fin. D'autres sources locales d'explorations géologiques devront aussi être évaluées.

La Figure 14 présente le modèle numérique de terrain pour le BVK, dérivé à partir des données MERIT DEM (Multi Error Removed Improved Terrain DEM), qui a été développé en supprimant de multiples composantes d'erreur (biais absolu, bruit de bande, bruit de speckle et biais de hauteur d'arbre) à partir des DEMs spatiaux existants (SRTM3 v2.1 et AW3D-30m v1). Il représente les élévations du terrain à une résolution de 3 s (~ 90 m à l'équateur) et couvre les zones terrestres comprises entre 90N et 60S, par rapport au géoïde EGM96. Pour le BVK, 12 classes d'élévation ont été obtenues qui montrent la dominance des hautes élévations (887m à 1144m) vers la partie Sud-Est du bassin, et les faibles élévations (285m à 478m) vers la partie Nord du bassin qui constitue l'exutoire.

Figure 16. Classes d'élévation en juxtaposition avec les isohyètes pour les BVK

La Figure 17 présente les types d'occupation de terres pour le BVK. Les planches 1-4 présentent les grands types d'occupation de terres identifies à partir de Google Earth dans le BVK. Les données tertiaires comportent des variables socio-économiques liées à l'utilisation des ressources en eau et constituent une source potentielle à l'analyse des systèmes des ressources en eau et information hydrologique pour la conception d'un réseau optimal de suivi hydrologique d'un bassin versant.

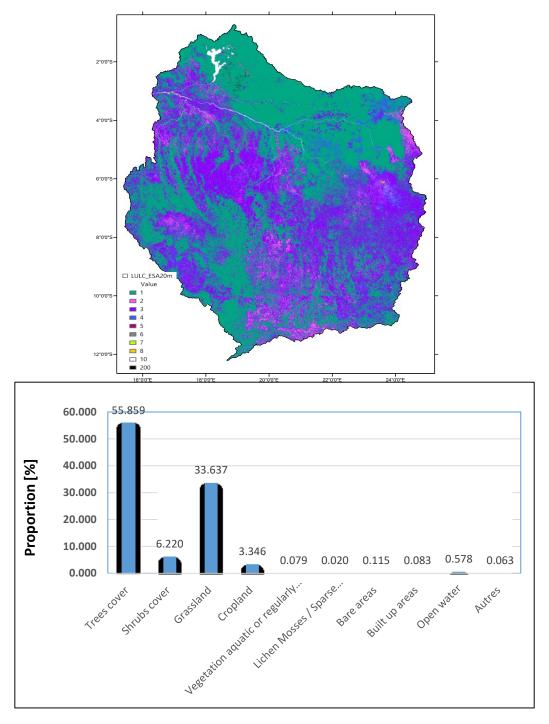


Figure 17. Présente les types d'occupation de terres pour le BVK

Planche 1. Carrières d'exploitation minière et sédimentation des cours d'eau

Planche 2. Lacs et étendues de zones humides

Planche 3. Grandes Villes, infrastructures aéroportuaires et hydroélectriques

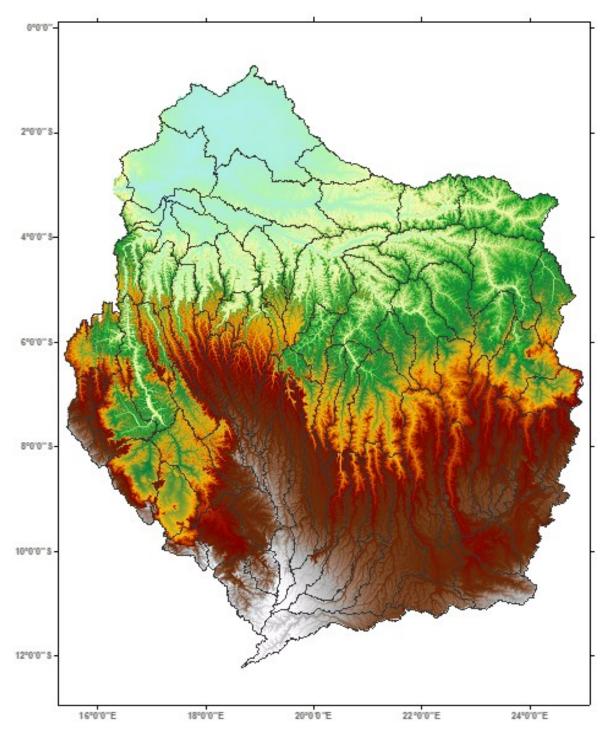


Planche 4. Grandes Plantations Agricoles

3.3 Priorisation et délimitation des unités spatiales des sous bassins

En général, les efforts visant à mettre sur pied les systèmes d'information hydrologique dans le passé s'étaient focalisés sur les magnitudes des écoulements et leur variabilité dans l'espace et le temps. Cependant, plus récemment, un accent a été placé sur l'importance de quantifier les processus hydrologiques et les incertitudes y afférentes, et ceci passe par une meilleure compréhension des processus, l'application des approches appropriées et l'acquisition des données. Les unités des sous-bassins se révèlent alors importantes pour atteindre ces objectifs. Les unités des sous-bassins sont des unités élémentaires de gestion du bassin versant. Une classification des telles unités pour l'ensemble du bassin versant de Kasaï est très importante vue la complexité des processus hydrologiques et la nature de bassin non-jaugé que revêt le BVK, et elle permettrait une synchronisation de l'information hydrologique dans l'espace et le temps.

La délimitation des sous bassins versants dans cette étude s'est faite en fonction du gradient d'altitudes et de pentes dominantes (zones de pentes et d'altitudes dominantes ou les plus fréquentes), ainsi que des principaux cours d'eau, des sites de jaugeage existants, et les occupations de terres (zones minières, zones agricoles, agglomérations urbaines, lacs naturels). Ces sous unités du bassin versant seront donc utilisées pour évaluer la similitude entre les différents constituants du fonctionnement hydrologique. L'hypothèse principale à la base de cette étude est qu'il devrait être possible d'appliquer des principes communs d'évaluation diagnostique pour tirer des conclusions sur les propriétés physiques des bassins (climat, végétation, géologie, géomorphologie, sols, etc.) et en tirer des implications utiles pour les processus de génération de ruissellement dominants dans le bassin versant. Une deuxième hypothèse est que les attributs physiques du bassin tels que le climat, la topographie, la végétation, les types de sol et la géologie exercent un contrôle important sur la réponse hydrologique du bassin. Ainsi, des zones présentant des caractéristiques physiographiques similaires peuvent conduire à des réponses hydrologiques similaires, bien que cela ne soit toujours pas possible dans tous les cas (Burn et al., 1997). L'approche épouse la théorie unifiée émergente de l'hydrologie à l'échelle du bassin versant (Sivakumar et al., 2011), dans le but de développer une base de propriétés physiques du bassin; identifier les propriétés statistiques des variables physiques du bassin. La Figure 18 présente les 91 unités des sous bassins obtenues en découpant le bassin versant sur la base de gradient d'élévation et de pente.

Figure 18. 91 unités des sous bassins obtenues en découpant le bassin versant sur la base de gradient d'élévation et de pente.

4. Conception du réseau de suivi météorologique

4.1 Le réseau des stations classiques historiques de suivi météorologique

La Figure 19 présente le réseau des stations classiques historiques de suivi météorologique installées à l'époque coloniale sur le bassin versant du Kasaï. Leurs caractéristiques pour chaque territoire sont présentées aux Tableaux 1 et 2, respectivement pour la RDC et l'Angola. Les caractéristiques de ce réseau sont présentées dans le rapport de « l'Etat des Lieux du suivi hydrométéorologique ».

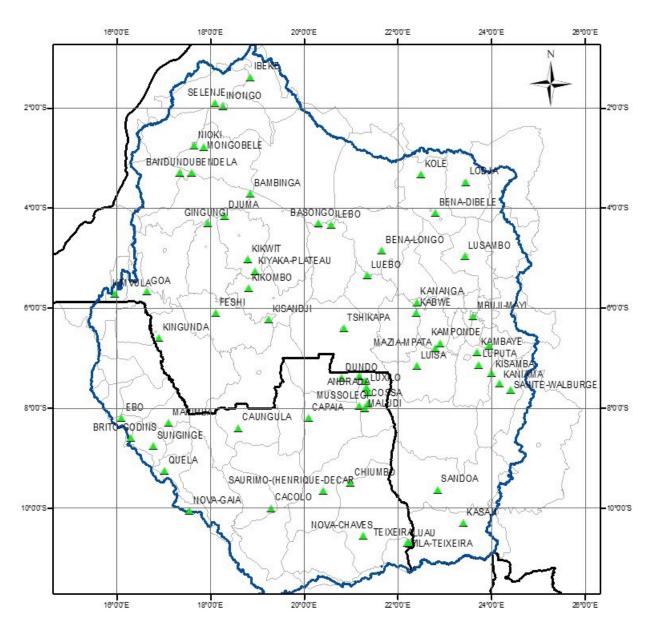


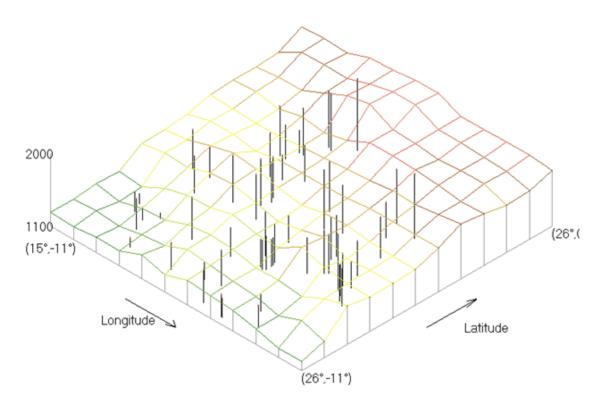
Figure 19. Le réseau des stations classiques historiques de suivi météorologique installées à l'époque coloniale sur le bassin versant du Kasaï.

Tableau 1 Nombre des stations historiques et leurs caractéristiques par territoire dans le BVK (DRC)

	Code		Code	Station				PMA
Province	Adm	Territoire	Adm	MET	Long	Lat	Alt	[mm]
		Kamina	CD7302	NUL				
				KANIAMA	24.18	-7.51	845	1560
				KISAMBA	24.00	-7.30	760	1500
Haut-	6073		607202	SAINTE-	24.44	7.60	1000	4574
Lomami	CD73	Kaniama	CD7303	WALBURGE	24.41	-7.63	1000	1571
		Luebo	CD9204	LUEBO	21.35	-5.35	456	1524
		Kamonia	CD9202	NUL				
		Ilebo	CD9205	ILEBO	20.58	-4.33	420	1728
		Mweka	CD9207	BENA-LONGO	21.66	-4.85	578	1702
		Dekese	CD9208	NUL				
		Tshikapa	CD9201	TSHIKAPA	20.85	-6.41	481	1446
		Luebo	CD9203	NUL				
Kasaï	CD92	Ilebo	CD9206	NUL				
				KABWE	22.40	-6.10	580	1626
				KAMPONDE	22.90	-6.70	840	1588
				MAZIA-				
		Dibaya	CD9102	МРАТА	22.81	-6.80	850	1648
		Luiza	CD9104	LUIZA	22.41	-7.16	775	1552
		Kazumba	CD9105	NUL				
		Demba	CD9106	NUL				
		Dimbelenge	CD9107	NUL				
Kasaï-		Kananga	CD9101	KANANGA	22.41	-5.88	657	1620
Central	CD91	Tshimbulu	CD9103	NUL				
		Tshilenge	CD8202	NUL				
		Miabi	CD8205	NUL				
		Kabeya-						
		Kamwanga	CD8207	NUL				
		Lupatapata	CD8208	NUL				
		Katanda	CD8209	NUL				
		Mbuji-Mayi	CD8201	MBUJI-MAYI	23.61	-6.16	677	1538
		Tshilenge	CD8203	NUL				
Kasaï-		Lukalaba	CD8204	NUL				
Oriental	CD82	Miabi	CD8206	NUL				
Kongo- Central	CD20	Kimvula	CD2019	KIMVULA	15.95	-5.71	630	1596

Tableau 1 suite

	Code		Code	Station				PMA
Province	Adm	Territoire	Adm	MET	Long	Lat	Alt	[mm]
		Kenge	CD3102	NUL				
				FESHI	18.11	-6.10	900	1696
		Feshi	CD3103	KISANDJI	19.25	-6.23	810	1662
		Kahemba	CD3105	NUL				
		Kasongo-Lunda	CD3107	KINGUNDA	16.90	-6.60	540	1572
		Popokabaka	CD3108	GOA	16.65	-5.66	530	1486
		Kenge	CD3101	NUL				
		Kahemba	CD3104	NUL				
Kwango	CD31	Kasongo-Lunda	CD3106	NUL				
				KIYAKA-	10.05	F 26	720	4645
				PLATEAU	18.95	-5.26	739	1615
		Bulungu	CD3204	DJUMA	18.31	-4.15	410	1410
		Masi-Manimba	CD3212	GINGUNGI	17.95	-4.31	600	1650
		Bagata	CD3202	BAMBINGA	18.86	-3.71	330	1554
		Idiofa	CD3206	NUL				
		Gungu	CD3210	KIKOMBO	18.81	-5.60	640	1679
				BANDUNDU	17.35	-3.30	324	1718
				BENDELA	17.60	-3.30	300	1536
		Bandundu	CD3201	NUL				
		Kikwit	CD3203	KIKWIT	18.80	-5.03	449	1620
		Idiofa	CD3207	NUL				
		Mangai	CD3208	NUL				
		Dibaya-Lubwe	CD3209	NUL				
		Gungu	CD3211	NUL				
Kwilu	CD32	Masi-Manimba	CD3213	NUL				
				KAMBAYE	23.70	-6.88	750	1524
		Luilu	CD8104	LUPUTA	23.73	-7.13	877	1808
		Kamiji	CD8105	NUL				
		Ngandajika	CD8106	NGANDAJIKA	23.95	-6.75	780	1424
		Kabinda	CD8102	NUL				
		Mwene-Ditu	CD8103	NUL				
		Kabinda	CD8101	NUL				
Lomami	CD81	Ngandajika	CD8107	NUL				
		Dilolo	CD7205	NUL				
		Sandoa	CD7206	SANDOA	22.85	-9.63	921	1319
		Kapanga	CD7207	NUL				
Lualaba	CD72	Kasaji	CD7204	KASAJI	23.40	-10.30	1020	1376


Table 1 suite

	Code		Code	Station				PMA
Province	Adm	Territoire	Adm	MET	Long	Lat	Alt	[mm]
				INONGO	18.26	-1.96	300	1819
		Inongo	CD3302	SELENJE	18.10	-1.90	380	1804
		Kiri	CD3303	IBEKE	18.85	-1.38	330	1992
		Oshwe	CD3304	BASONGO	20.30	-4.30	320	1580
		Kutu	CD3306	MONGOBELE	17.85	-2.78	330	1692
		Kwamouth	CD3307	NUL				
Mai-		Mushie	CD3311	NUL				
Ndombe	CD33	Nioki	CD3305	NIOKI	17.66	-2.75	330	1385
		Lusambo	CD8302	LUSAMBO	23.43	-4.96	424	1616
		Kole	CD8306	KOLE	22.50	-3.33	575	1782
		Katako-Kombe	CD8308	NUL				
		Lubefu	CD8309	NUL				
		Lodja	CD8304	LODJA	23.46	-3.48	500	1906
		Bena-Dibele	CD8305	BENA-DIBELE	22.80	-4.10	440	1549
Sankuru	CD83	Tshumbe	CD8311	NUL				

Tableau 2 Nombre des stations historiques et leurs caractéristiques par territoire dans le BVK (Angola)

	Code		Code	Station				PMA
Province	Adm	Territoire	Adm	MET	Long	Lat	Alt	[mm]
				MUSSOLEGI	21.18	-7.96	839	1459.2
				COSSA	21.36	-7.91	800	1516.8
				ANDRADA	21.36	-7.68	735	1436.4
				LUXILO	21.33	-7.58	752	1440.0
				CASSANGUIDI	21.30	-7.46	764	1426.8
		Cambulo	1202	MALUDI	21.30	-8.01	835	1476.0
		Capenda	1208	CACOLO	19.30	-10.00	1240	1441.2
		Lubalo	1207	NUL				
		Caungula	1205	CAUNGULA	18.60	-8.40	980	1639.2
		Chitato		DUNDO	20.81	-7.40	776	1648.8
		Chitato	1203	CHIFUTO	21.18	-7.36	760	1544.4
		Lucapa	1201	CAPAIA	20.10	-8.20	960	1467.6
		Cuango	1206	NUL				
Lunda		Cuilo	1204	NUL				
Norte	AGO12	XAí Muteba	1209	NOVA-GAIA	17.55	-10.06	1260	1224.0
		Cacolo	1304	NUL				
		Dala	1303	NUL				
		Saurimo	1301	SAURIMO	20.40	-9.65	1080	1320.0
				NOVA-CHAVES	21.26	-10.55	1080	1522.8
Lunda Sul	AGO13	Muconda	1302	CHIUMBO	21.00	-9.50	1040	1542.0
		Cunda-dia-Baza	1410	NUL				
				SUNGINGE	16.78	-8.76	630	1260.0
		Caombo	1406	BRITO-GODINS	16.30	-8.60	1000	1351.2
		Marimba	1409	MARIMBA	17.10	-8.30	680	1177.2
		Massango	1407	NUL				
Malanje	AGO14	Quela	1405	QUELA	17.01	-9.25	1216	1494.0
		Alto Cauale	1709	EBO	16.10	-8.20	1080	1236.0
		Buengas	1716	NUL				
		Maquela do						
		Zombo	1707	NUL				
		Milunga	1713	NUL				
		Puri	1714	NUL				
		Quimbele	1712	NUL				
Uíge	AGO17	Sanza Pombo	1710	NUL				
		Camanongue	1502	NUL			2.5	
				LUAU	22.25	-10.71	1100	1334.4
				TEIXEIRA	22.23	-10.70	1100	1334.4
Moxico	AGO15	Luau	1509	VILA-TEIXEIRA	22.20	-10.70	1200	1388.4

La Figure 20 donne la représentation en 3D de la distribution spatiale des stations sur le BVK. Cette Figure démontre clairement que la distribution spatiale des stations existantes ne prend pas en compte les éléments de la variation spatiale tels que les reliefs, élévations et pentes; ce qui ne correspond pas aux normes de l'OMM, et surtout ne fournit pas d'informations nécessaires pouvant permettre la mise en exergue des connaissances sur la variabilité climatique dans le BVK. Cette situation est bien illustrée à la Figure 21 qui donne le graphique des nuages des points et les classes de la distribution spatiale des stations d'observation au sol (et de la grille d'interpolation) en fonction d'altitude. Il ressort de cette Figure que l'ensemble des stations du BVK, sont contenues dans la frange d'altitude allant de 250 m à 1250 m; dont 14% de stations sont situées à l'altitude de 250 m, représentant une superficie de 268614km² (soit une densité de 0.00003 station/km²); 21.88 % à l'altitude de 500 m, représentant une superficie de 539606 km² (soit une densité de 0.000025 station/km²) ; 26.56% à l'altitude de 700 m, représentant une superficie de 196422 km² (soit une densité de 0.000086 station/km²); 20.3% à l'altitude de 900 m, représentant une superficie de 238565 km² (soit une densité de 0.000054 station/km²); 12.5% à l'altitude de 1100 m, représentant une superficie de 201162 km² (soit une densité de 0.000039 station/km²); et 4.68% à l'altitude de 1250m, représentant une superficie de 33397 km² (soit une densité de 0.000089 station/km2).

Figure 20. Représentation en en 3D du BVK et de la distribution spatiale des stations historiques

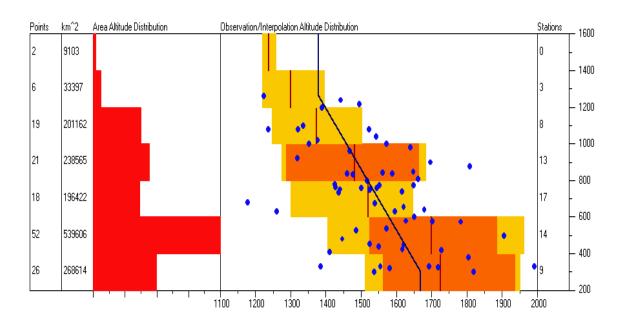


Figure 21. Nuages des points et classes de la distribution spatiale des stations d'observation au sol (et de la grille d'interpolation) en fonction d'altitude.

4.2 Le réseau optimal des stations de suivi météorologique

La Figure 18 présente la distribution spatiale du réseau optimal de suivi météorologique conçu pour le bassin versant du Kasaï. Ce réseau optimal tient compte la localisation des Anciennes Stations installées sur le bassin versant (AS), de Grandes Villes (GV), des Aéroports Principaux (AP), Grandes Plantations (GP) et du gradient d'Elévations Dominantes (ED). La Figure 22 présente la distribution de ces stations par rapport au gradient altitudinal. La Figure 23 présente les polygones de Thiessen et leurs superficies pour chaque emplacement des stations. Le Tableau 3 présente les caractéristiques spatiales et la moyenne annuelle des variables climatiques pour chaque station retenue.

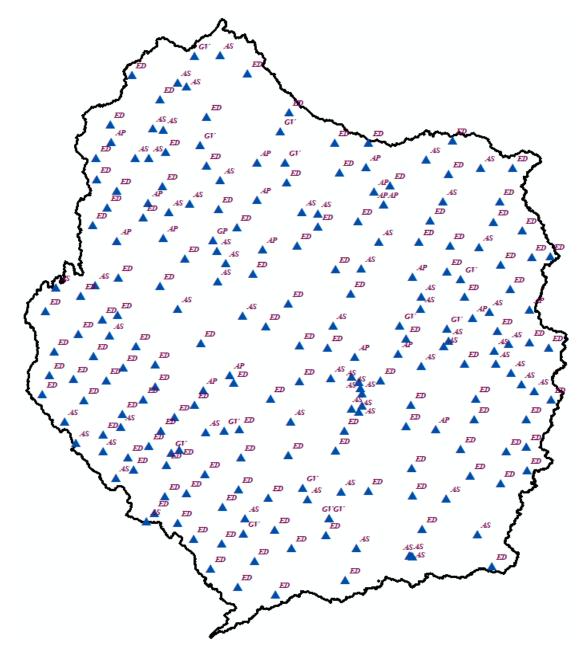
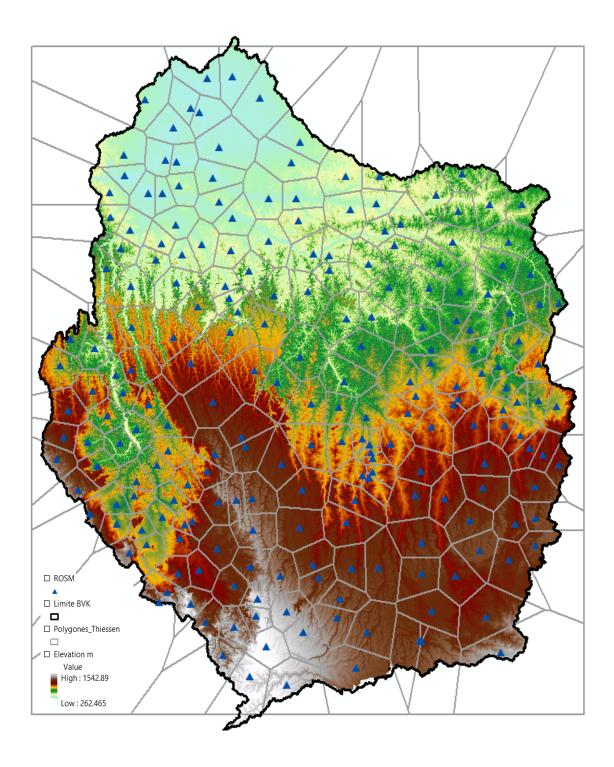
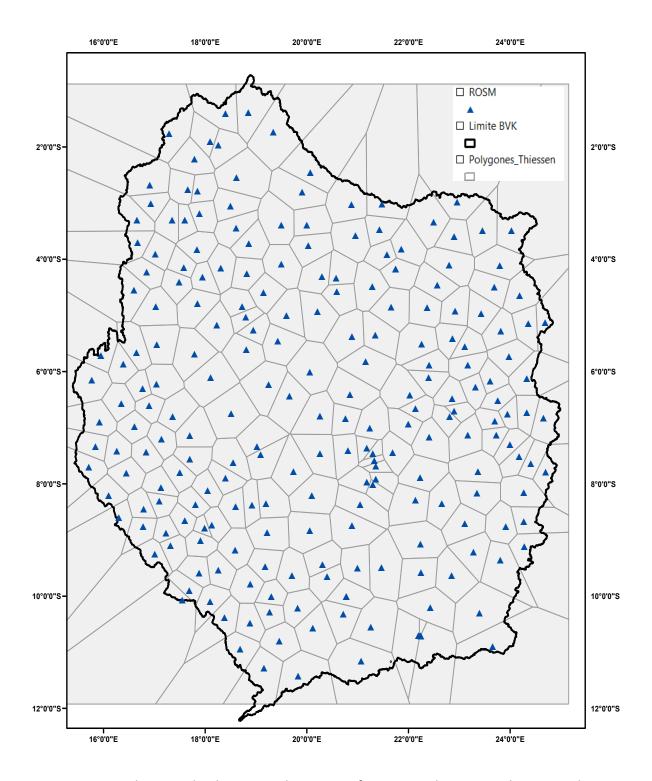




Figure 22. Distribution spatiale du réseau optimal de suivi météorologique

Figure 23. Gradient altitudinal et distribution spatiale des stations de suivi météorologique

Figure 24. Polygones de Thiessen et leurs superficies pour chaque emplacement des stations.

Tableau 3. Caractéristiques spatiales et la moyenne annuelle des variables climatiques pour chaque station retenue

ID	Long	Lat	Name	Туре	LULC	Elévation	PMA	ETP	IA	Vent	Vapeur	T MOY	T MIN	T MAX	Insolation
1	21	-9.5	CHIUMBO	AS	1	1074	1541	1420	1.098	4.900	16.593	22.201	14.200	29.602	56.805
2	21.26	-10.55	NOVA-CHAVES	AS	1	1113	1509	1526	0.985	5.021	13.826	21.963	14.248	30.262	58.567
3	22.25	-10.71	LUAU	AS	3	1064	1382	1615	0.863	5.100	11.700	22.408	14.602	30.684	60.200
4	22.23	-10.7	TEIXEIRA	AS	8	1103	1381	1615	0.864	5.100	11.700	22.443	14.593	30.691	60.200
5	22.2	-10.7	VILA-TEIXEIRA	AS	4	1096	1381	1615	0.864	5.100	11.700	22.443	14.593	30.691	60.200
6	17.55	-10.06	NOVA-GAIA	AS	4	1160	1233	1354	0.907	5.100	14.538	20.408	14.005	26.727	52.897
7	19.3	-10	CACOLO	AS	1	1322	1437	1412	1.007	4.925	16.340	21.977	14.175	29.241	56.318
8	20.81	-7.4	DUNDO	AS	3	725	1599	1344	1.180	4.900	24.300	24.334	19.400	31.200	51.100
9	21.18	-7.36	CHIFUTO	AS	3	652	1583	1342	1.176	4.868	24.283	24.285	19.398	31.176	51.057
10	21.36	-7.91	COSSA	AS	1	788	1508	1349	1.105	4.874	23.343	24.006	18.784	30.966	51.600
11	21.3	-7.46	CASSANGUIDI	AS	3	764	1503	1340	1.137	4.846	24.201	24.226	19.363	31.134	50.983
12	21.33	-7.58	LUXILO	AS	3	738	1503	1342	1.132	4.845	24.037	24.199	19.256	31.096	51.079
13	21.18	-7.96	MUSSOLEGI	AS	3	786	1490	1350	1.106	4.885	23.469	23.938	18.856	31.007	51.596
14	21.36	-7.68	ANDRADA	AS	3	734	1508	1345	1.128	4.875	23.768	24.158	19.070	31.056	51.292
15	21.3	-8.01	MALUDI	AS	3	783	1505	1352	1.097	4.876	23.066	23.982	18.595	30.911	51.819
16	16.78	-8.76	SUNGINGE	AS	1	648	1295	1406	0.931	5.100	21.627	22.950	14.637	32.264	57.664
17	20.1	-8.2	CAPAIA	AS	2	1003	1466	1404	1.018	4.900	18.174	23.711	15.263	29.927	55.634
18	20.4	-9.65	SAURIMO	AS	8	1062	1354	1420	0.930	4.900	16.600	22.180	14.200	29.600	56.800
19	16.1	-8.2	EBO	AS	1	1061	1253	1405	0.915	5.100	21.127	22.713	15.153	32.189	57.528
20	16.3	-8.6	BRITO-GODINS	AS	3	1093	1271	1397	0.932	5.100	21.249	23.048	14.751	31.816	56.866
21	17.1	-8.3	MARIMBA	AS	1	767	1231	1417	0.852	5.100	22.100	23.621	14.700	32.700	58.600
22	17.01	-9.25	QUELA	AS	1	1166	1414	1368	1.034	5.100	19.428	21.243	14.438	30.362	54.433
23	18.6	-8.4	CAUNGULA	AS	1	1001	1637	1413	1.196	5.060	20.706	21.542	14.647	31.772	57.825
24	23.4	-10.3	KASAJI	AS	3	1041	1390	1582	0.839	5.591	12.435	21.069	14.748	29.837	61.074
25	18.85	-1.38	IBEKE	AS	1	299	1976	1278	1.584	2.505	27.080	25.177	21.928	30.106	47.595
26	18.26	-1.96	INONGO	AS	10	291	1814	1281	1.412	2.515	26.961	25.277	21.960	30.110	47.698

27	17.85	-2.78	MONGOBELE	AS	2	294	1601	1290	1.240	2.956	26.251	25.281	21.322	30.592	47.830
28	17.66	-2.75	NIOKI	AS	3	294	1521	1292	1.185	3.082	26.049	25.279	21.140	30.723	47.904
29	18.1	-1.9	SELENJE	AS	1	301	1802	1281	1.404	2.514	26.950	25.266	21.947	30.100	47.698
30	22.5	-3.33	KOLE	AS	1	451	1782	1200	1.501	3.200	23.882	23.851	19.234	29.636	43.497
31	23.46	-3.48	LODJA	AS	1	507	1887	1205	1.584	3.200	25.118	23.941	19.390	30.628	43.567
32	17.35	-3.3	BANDUNDU	AS	3	315	1546	1295	1.199	3.248	25.773	25.104	20.889	30.905	47.934
33	18.86	-3.71	BAMBINGA	AS	1	327	1546	1264	1.206	3.556	25.286	25.153	20.083	30.521	47.873
34	20.58	-4.33	ILEBO	AS	8	424	1702	1234	1.382	3.200	25.854	24.515	20.656	30.290	45.217
35	21.66	-4.85	BENA-LONGO	AS	1	581	1677	1217	1.383	3.200	24.042	23.605	18.977	29.914	45.986
36	23.43	-4.96	LUSAMBO	AS	4	480	1617	1236	1.301	3.221	25.947	24.493	20.171	31.280	45.822
37	17.6	-3.3	BENDELA	AS	3	301	1544	1290	1.204	3.162	25.865	25.076	20.959	30.857	47.605
38	17.95	-4.31	GINGUNGI	AS	1	357	1620	1271	1.274	3.658	25.119	23.657	20.003	30.607	47.981
39	18.31	-4.15	DJUMA	AS	1	370	1510	1268	1.183	3.637	25.145	24.399	19.954	30.609	48.110
40	20.3	-4.3	BASONGO	AS	1	379	1656	1235	1.351	3.221	25.866	24.511	20.662	30.307	45.306
41	21.35	-5.35	LUEBO	AS	4	477	1561	1252	1.267	3.643	24.084	24.694	19.096	30.248	47.420
42	22.8	-4.1	BENA-DIBELE	AS	4	450	1603	1210	1.342	3.200	25.115	23.992	19.436	30.643	44.073
43	22.41	-5.88	KANANGA	AS	8	593	1622	1263	1.294	3.268	23.496	23.715	19.312	29.980	48.712
44	15.95	-5.71	KIMVULA	AS	2	568	1543	1280	1.181	5.801	21.879	23.506	18.847	29.417	43.410
45	16.65	-5.66	GOA	AS	1	563	1519	1300	1.130	6.100	21.700	23.865	18.700	29.500	44.400
46	18.81	-5.6	KIKOMBO	AS	1	448	1672	1290	1.303	4.591	22.527	22.910	19.336	29.006	49.970
47	18.8	-5.03	KIKWIT	AS	3	465	1619	1266	1.292	3.969	24.393	23.864	19.544	30.181	48.657
48	18.95	-5.26	KIYAKA-PLATEAU	AS	10	362	1646	1282	1.296	4.384	23.149	23.418	19.405	29.397	49.533
49	20.85	-6.41	TSHIKAPA	AS	2	604	1464	1344	1.110	4.900	24.300	24.371	19.400	31.200	51.100
50	22.81	-6.8	MAZIA-MPATA	AS	3	875	1599	1303	1.225	4.078	22.295	23.274	18.712	30.021	48.988
51	23.95	-6.75	GANDAJIKA	AS	4	803	1469	1343	1.120	4.388	20.856	23.453	18.108	30.344	52.086
52	23.7	-6.88	KAMBAYE	AS	3	708	1517	1325	1.160	4.439	21.070	23.649	18.129	30.101	50.393
53	23.61	-6.16	MBUJI-MAYI	AS	4	548	1539	1403	1.124	4.948	23.077	24.785	19.197	30.953	50.518
54	18.11	-6.1	FESHI	AS	3	892	1693	1293	1.301	4.756	22.241	21.929	19.274	28.883	49.823
55	19.25	-6.23	KISANDJI	AS	3	810	1665	1307	1.274	4.752	22.743	22.752	19.326	29.420	50.433

56	22.4	-6.1	KABWE	AS	5	571	1619	1266	1.288	3.297	23.467	23.673	19.319	29.990	48.860
57	22.9	-6.7	KAMPONDE	AS	3	851	1595	1345	1.189	4.473	22.552	23.256	18.881	30.356	49.551
58	22.41	-7.16	LUISA	AS	1	829	1561	1271	1.209	3.601	22.862	23.552	18.972	29.938	48.865
59	23.73	-7.13	LUPUTA	AS	2	849	1547	1306	1.196	4.368	20.484	23.306	17.820	29.775	50.230
60	24.18	-7.51	KANIAMA	AS	1	865	1552	1351	1.189	4.812	19.128	22.529	17.295	29.392	52.516
61	24.41	-7.63	SAINTE-WALBURGE	AS	3	944	1538	1355	1.168	4.862	19.031	22.576	17.242	29.322	52.809
62	16.9	-6.6	KINGUNDA	AS	1	572	1560	1314	1.178	5.979	21.708	23.926	18.217	29.887	46.116
63	24	-7.3	KISAMBA	AS	3	773	1543	1341	1.185	4.642	19.641	22.772	17.520	29.645	52.138
64	22.85	-9.63	SANDOA	AS	1	890	1323	1601	0.814	5.088	12.160	22.732	15.042	30.322	59.940
65	15.84	-7.331	ED	ED	2	953	1300	1354	0.963	5.262	20.607	21.856	17.851	30.863	52.095
66	17.49	-4.402	ED	ED	1	450	1651	1291	1.297	3.464	25.424	23.464	20.667	30.768	47.361
67	21.29	-4.477	ED	ED	1	521	1698	1220	1.393	3.200	24.463	23.752	19.339	29.997	45.729
68	23.35	-8.157	ED	ED	1	975	1484	1341	1.126	4.730	19.176	22.785	17.278	29.352	51.837
69	24.7	-7.788	ED	ED	3	955	1488	1362	1.117	4.986	18.860	22.490	17.139	29.111	53.516
70	20.12	-10.56	ED	ED	3	1253	1427	1412	0.996	4.945	16.301	21.990	14.168	29.374	56.355
71	21.69	-7.439	ED	ED	3	899	1500	1331	1.148	4.699	23.980	24.061	19.285	30.969	50.693
72	24.66	-6.82	ED	ED	3	721	1447	1345	1.070	4.416	20.380	22.990	17.936	30.152	52.664
73	24.27	-8.153	ED	ED	1	943	1466	1363	1.106	4.921	18.965	22.457	17.078	29.067	53.528
74	23.76	-6.514	ED	ED	4	581	1485	1365	1.114	4.585	21.619	23.907	18.488	30.578	51.621
75	17.84	-3.824	ED	ED	3	359	1601	1288	1.252	3.249	25.727	24.255	20.794	30.867	47.657
76	17.79	-5.685	ED	ED	3	858	1675	1287	1.309	5.011	22.764	22.193	19.142	29.566	47.313
77	19.09	-7.478	ED	ED	3	1000	1622	1349	1.192	4.894	23.522	22.864	18.825	30.984	51.763
78	19.66	-6.431	ED	ED	3	603	1653	1335	1.213	4.866	23.940	22.923	19.383	30.788	50.945
79	18.51	-6.746	ED	ED	1	963	1687	1302	1.292	4.728	22.245	22.050	19.032	29.088	50.716
80	20.26	-7.453	ED	ED	2	828	1567	1350	1.148	4.900	23.709	24.296	19.001	31.077	51.537
81	23.69	-4.489	ED	ED	1	559	1629	1230	1.318	3.200	25.874	24.450	20.074	31.205	45.453
82	17.81	-8.365	ED	ED	1	675	1477	1414	1.060	5.100	21.756	22.335	14.668	32.428	58.342
83	23.11	-8.704	ED	ED	1	1070	1344	1427	0.957	4.884	16.957	23.041	16.515	29.585	54.801
84	20.88	-3.02	ED	ED	1	397	2033	1236	1.642	3.197	25.894	24.335	20.616	30.279	45.240

85	22.57	-4.458	ED	ED	1	580	1556	1215	1.304	3.200	24.078	23.448	18.949	29.955	45.851
86	19.83	-11.42	ED	ED	3	1335	1236	1333	0.910	5.293	14.339	20.084	13.905	27.438	52.475
87	22.25	-9.577	ED	ED	3	1080	1347	1594	0.838	5.078	12.231	22.752	14.525	30.590	59.832
88	18.26	-9.528	ED	ED	1	889	1389	1361	1.030	5.084	14.840	20.588	14.032	27.067	53.340
89	16.77	-6.299	ED	ED	1	479	1542	1304	1.158	6.064	21.671	23.899	18.555	29.616	44.915
90	17.89	-3.182	ED	ED	2	459	1614	1290	1.251	3.125	25.928	25.159	21.017	30.815	47.611
91	23.17	-7.126	ED	ED	3	899	1604	1284	1.244	4.282	20.929	23.248	17.962	29.663	48.694
92	20.06	-8.829	ED	ED	1	1022	1385	1418	0.948	4.900	16.776	22.428	14.319	29.636	56.670
93	22.23	-7.886	ED	ED	3	913	1518	1287	1.170	4.333	20.985	23.821	17.803	29.765	49.189
94	19.15	-4.586	ED	ED	3	513	1601	1260	1.285	3.818	24.798	24.171	19.650	30.384	48.224
95	20.03	-3.747	ED	ED	1	480	1588	1236	1.305	3.195	25.906	24.627	20.709	30.299	45.320
96	20.89	-8.74	ED	ED	3	873	1467	1415	1.023	4.900	17.120	23.158	14.551	29.708	56.415
97	22.43	-10.2	ED	ED	3	1042	1338	1615	0.817	5.100	11.700	22.667	14.878	30.487	60.200
98	22.24	-9.072	ED	ED	1	1082	1346	1497	0.884	4.955	14.669	23.497	14.492	30.096	57.874
99	20.89	-5.371	Banga_GP	GP	1	461	1545	1312	1.167	4.460	24.351	24.907	19.429	30.857	49.688
100	24.36	-5.138	ED	ED	2	639	1566	1286	1.240	3.726	25.115	24.959	19.958	31.169	47.359
101	20.96	-3.568	ED	ED	1	414	1730	1234	1.402	3.200	25.892	24.492	20.693	30.298	45.200
102	22.37	-4.859	ED	ED	1	507	1660	1220	1.366	3.200	24.184	23.551	19.068	30.057	46.038
103	20.06	-6.005	Banga_GP	GP	3	590	1644	1340	1.198	4.875	24.181	22.984	19.403	31.044	51.000
104	21.16	-5.82	ED	ED	3	681	1497	1321	1.142	4.565	24.210	24.655	19.322	30.944	50.225
105	22.87	-5.404	ED	ED	3	663	1618	1241	1.301	3.239	25.440	24.328	19.972	31.004	46.349
106	16.79	-8.446	ED	ED	3	641	1263	1415	0.900	5.100	21.957	23.508	14.696	32.605	58.394
107	17.32	-9.097	ED	ED	3	730	1443	1396	1.053	5.100	20.375	21.192	14.532	31.278	56.745
108	16.84	-7.434	ED	ED	2	643	1270	1405	0.891	5.202	21.923	23.776	15.108	32.374	57.153
109	17.04	-6.217	ED	ED	1	883	1548	1307	1.163	6.042	21.696	23.718	18.469	29.685	45.220
110	17.36	-6.794	ED	ED	1	788	1557	1358	1.138	5.476	21.914	22.663	16.752	31.039	52.014
111	19.43	-5.453	ED	ED	2	744	1624	1292	1.299	4.638	22.412	23.140	19.338	28.936	50.046
112	19.2	-8.344	ED	ED	1	1107	1566	1416	1.117	4.914	17.369	22.564	14.495	29.897	56.641
113	18.59	-9.172	ED	ED	1	1045	1575	1372	1.153	5.056	15.420	20.842	14.086	27.703	54.107

114	18.88	-10.47	ED	ED	1	1166	1443	1360	1.083	5.090	14.687	20.560	13.953	27.103	53.244
115	17.69	-9.899	ED	ED	1	878	1306	1354	0.962	5.100	14.788	20.478	14.034	26.909	52.934
116	18.23	-5.171	ED	ED	3	781	1650	1271	1.307	4.178	24.028	23.214	19.465	30.022	48.480
117	16.45	-7.803	ED	ED	1	548	1247	1413	0.904	5.136	21.889	23.657	14.844	32.585	58.090
118	15.71	-7.696	ED	ED	3	1098	1384	1379	0.993	5.113	20.593	21.872	19.460	30.462	54.928
119	20.72	-10.31	ED	ED	4	1138	1477	1436	1.031	4.937	16.008	21.989	14.198	29.642	56.965
120	23.28	-9.208	ED	ED	3	1102	1316	1490	0.897	4.995	15.644	22.602	15.900	29.436	57.723
121	23.81	-9.355	ED	ED	1	976	1279	1399	0.929	4.963	18.324	22.496	16.427	28.572	56.151
122	16.6	-4.546	GP_Bukanga Lonzo	GP	2	669	1600	1296	1.203	5.866	22.068	23.450	18.907	29.600	44.425
123	17.02	-3.903	ED	ED	1	401	1689	1291	1.287	3.324	25.625	24.911	20.806	30.840	47.463
124	19.46	-10.79	ED	ED	2	1395	1295	1353	0.942	5.198	14.844	20.530	13.974	27.881	53.447
125	15.92	-6.892	ED	ED	1	972	1273	1296	0.965	5.857	20.706	21.871	18.820	29.581	44.727
126	19.34	-1.729	ED	ED	1	311	1986	1277	1.591	2.530	26.941	25.143	21.881	30.122	47.485
127	17.29	-1.757	ED	ED	1	365	1640	1274	1.311	2.551	26.550	25.257	21.512	30.045	47.573
128	16.91	-2.675	ED	ED	1	356	1483	1343	1.106	3.754	25.511	25.258	20.806	30.914	51.764
129	17.79	-2.213	ED	ED	3	297	1693	1285	1.316	2.674	26.698	25.301	21.721	30.252	47.860
130	18.61	-3.443	ED	ED	1	408	1563	1286	1.208	3.199	25.817	25.252	20.860	30.771	47.658
131	18.62	-2.539	ED	ED	1	305	1801	1281	1.388	2.520	26.966	25.297	21.968	30.123	47.697
132	16.66	-3.293	ED	ED	2	414	1601	1320	1.223	3.534	25.614	24.908	20.826	30.937	49.904
133	20.07	-2.452	ED	ED	1	368	2031	1277	1.587	2.586	26.873	24.465	21.766	30.121	47.408
134	21.48	-3.014	ED	ED	1	510	2107	1234	1.700	3.200	25.899	24.300	20.700	30.300	45.200
135	21.86	-3.812	ED	ED	1	556	1699	1213	1.417	3.200	24.307	23.858	19.318	29.899	45.008
136	22.96	-2.975	ED	ED	1	527	1388	1198	1.200	3.200	23.700	21.400	19.200	29.500	43.400
137	22.9	-3.592	ED	ED	1	565	1818	1205	1.527	3.200	24.953	23.886	19.374	30.504	43.636
138	23.8	-4.111	ED	ED	1	514	1693	1215	1.384	3.200	25.463	24.184	19.663	30.897	44.324
139	24.19	-4.637	ED	ED	2	561	1598	1252	1.276	3.399	25.537	24.734	20.036	31.173	46.309
140	22.92	-4.921	ED	ED	4	582	1618	1232	1.307	3.200	25.755	24.376	20.052	31.136	45.842
141	23.17	-5.877	ED	ED	4	603	1599	1307	1.242	3.805	23.809	24.152	19.461	30.497	48.838
142	23.98	-5.733	ED	ED	1	686	1545	1402	1.130	4.923	23.489	24.997	19.368	31.094	50.146

143	23.82	-5.276	ED	ED	1	574	1587	1308	1.227	3.965	24.980	24.774	19.872	31.227	47.622
144	24.69	-5.122	ED	ED	3	643	1529	1306	1.192	3.892	24.462	25.045	19.846	30.962	48.476
145	24.33	-6.73	ED	ED	3	691	1458	1345	1.101	4.385	20.714	23.316	18.055	30.343	52.447
146	23.37	-7.772	ED	ED	1	986	1606	1302	1.239	4.485	19.967	22.912	17.556	29.419	49.973
147	23.92	-8.759	ED	ED	3	937	1328	1373	0.980	4.905	18.913	22.462	16.919	28.914	54.341
148	23.66	-10.89	ED	ED	1	1186	1522	1512	0.967	8.405	14.512	19.820	13.249	27.887	68.548
149	21.47	-9.487	ED	ED	3	1077	1543	1420	1.099	4.900	16.590	21.903	14.200	29.603	56.807
150	21.07	-11.15	ED	ED	1	1145	1493	1523	0.951	5.145	12.723	21.711	14.181	29.834	57.794
151	18.1	-10.09	ED	ED	1	1205	1296	1355	0.956	5.097	14.516	20.427	13.974	26.762	52.932
152	17.88	-9.584	ED	ED	3	950	1296	1355	0.955	5.100	14.737	20.462	14.026	26.878	52.986
153	17.91	-9.005	ED	ED	1	974	1599	1364	1.169	5.100	15.648	20.892	14.106	27.606	53.761
154	19.18	-9.467	ED	ED	1	1118	1464	1414	1.027	4.917	16.418	22.044	14.183	29.348	56.461
155	18.89	-9.782	ED	ED	3	1033	1448	1396	1.035	4.972	15.844	21.552	14.128	28.555	55.395
156	19.22	-8.865	ED	ED	1	1184	1552	1416	1.105	4.918	16.636	22.065	14.203	29.517	56.619
157	19.82	-10.21	ED	ED	1	1250	1387	1413	0.964	4.930	16.399	22.001	14.176	29.383	56.419
158	19.71	-9.625	ED	ED	1	1152	1387	1420	0.954	4.900	16.600	22.200	14.200	29.600	56.800
159	18.13	-8.728	ED	ED	4	873	1594	1394	1.166	5.089	18.954	21.167	14.410	30.284	56.368
160	17.6	-8.651	ED	ED	2	636	1336	1410	0.942	5.100	21.312	22.717	14.627	32.078	58.009
161	17.23	-8.871	ED	ED	3	688	1419	1405	1.029	5.100	21.246	21.627	14.608	31.982	57.559
162	18.05	-8.118	ED	ED	3	798	1607	1415	1.172	5.097	21.843	23.396	14.676	32.513	58.437
163	16.26	-7.408	ED	ED	1	615	1288	1385	0.944	5.284	21.061	22.644	16.202	31.756	54.962
164	17.14	-7.201	ED	ED	3	565	1414	1401	0.998	5.205	21.999	23.640	15.264	32.243	56.781
165	16.61	-6.978	ED	ED	1	765	1550	1310	1.175	6.016	20.700	23.985	18.363	29.770	45.597
166	17.7	-7.553	ED	ED	3	704	1396	1411	0.988	5.081	22.105	23.193	14.915	32.518	58.208
167	17.7	-7.131	ED	ED	1	654	1550	1376	1.126	5.030	22.111	22.376	16.205	31.433	55.540
168	16.39	-5.861	ED	ED	3	415	1503	1297	1.121	6.056	21.725	23.989	18.717	29.483	44.244
169	16.35	-6.566	ED	ED	1	843	1517	1301	1.151	5.965	21.450	23.627	18.596	29.647	44.861
170	15.77	-6.148	ED	ED	3	702	1421	1252	1.112	5.402	21.767	23.117	19.041	29.202	41.958
171	17.05	-5.517	ED	ED	3	708	1493	1300	1.107	6.094	21.709	24.038	18.702	29.503	44.411

172	20.26	-6.786	ED	ED	1	674	1594	1344	1.173	4.900	24.300	24.005	19.400	31.200	51.100
173	19.74	-7.78	ED	ED	1	967	1500	1380	1.075	4.900	20.696	23.779	16.966	30.451	53.768
174	18.82	-4.248	ED	ED	1	457	1549	1261	1.222	3.739	24.997	24.693	19.724	30.514	48.120
175	20.21	-4.924	Banga_GP	GP	2	549	1620	1245	1.316	3.448	25.359	24.364	20.420	30.170	46.083
176	20.59	-4.568	ED	ED	1	463	1705	1234	1.383	3.227	25.732	24.500	20.545	30.284	45.346
177	22.14	-6.651	ED	ED	1	766	1603	1272	1.267	3.429	23.445	23.648	19.286	30.049	49.062
178	24.03	-3.487	ED	ED	4	500	1889	1206	1.582	3.200	25.199	24.000	19.407	30.692	43.603
179	16.85	-4.223	Bukanga Lonzo_GP	GP	1	536	1630	1290	1.258	4.415	24.132	24.225	20.018	30.296	45.951
180	16.67	-3.699	ED	ED	1	429	1581	1295	1.229	3.496	25.482	24.827	20.744	30.789	47.653
181	20.76	-6.83	ED	ED	3	638	1552	1344	1.172	4.900	24.300	24.281	19.400	31.200	51.100
182	22.14	-8.283	ED	ED	1	1011	1469	1346	1.073	4.582	18.992	23.834	16.339	29.708	52.340
183	18.4	-7.89	ED	ED	1	940	1632	1415	1.194	5.085	21.930	23.550	14.802	32.521	58.329
184	21.05	-8.369	ED	ED	3	819	1469	1405	1.025	4.900	18.106	23.761	15.217	29.913	55.685
185	24.27	-8.666	ED	ED	3	1071	1341	1370	0.992	4.900	19.133	22.441	16.908	28.775	54.568
186	17.5	-7.792	ED	ED	2	715	1272	1414	0.895	5.090	22.103	23.571	14.813	32.604	58.393
187	24.28	-9.111	ED	ED	2	1101	1249	1377	0.919	4.919	19.199	22.429	16.662	28.401	55.769
188	17.13	-8.062	ED	ED	4	799	1203	1417	0.826	5.100	22.100	23.807	14.700	32.700	58.600
189	18.38	-10.38	ED	ED	1	1102	1461	1355	1.086	5.099	14.513	20.421	13.938	26.821	52.926
190	18.69	-10.94	ED	ED	1	1218	1450	1344	1.077	5.144	13.946	20.092	12.928	27.583	51.911
191	19.16	-11.28	ED	ED	1	1395	1315	1336	0.972	5.257	14.256	20.062	13.657	27.514	52.361
192	19.91	-2.799	Bolongonkele	GV	1	379	1717	1251	1.384	2.944	26.302	25.009	21.175	30.227	46.113
193	22.86	-6.478	Tshimbulu_Ville	GV	8	866	1596	1361	1.178	4.469	23.060	23.205	19.174	30.544	49.870
194	24.33	-6.117	Tunta_AP	AP	3	787	1525	1413	1.097	5.033	22.648	24.776	19.059	30.917	51.259
195	18.73	-4.835	Lusanga_PLT	GP	8	365	1592	1264	1.266	3.901	24.597	24.074	19.566	30.309	48.513
196	20.78	-10	Waco	GV	3	1103	1473	1432	1.028	4.912	16.300	22.008	14.206	29.680	57.008
197	17.85	-4.787	MasiManimba_AP	AP	2	571	1642	1276	1.293	4.227	24.319	23.374	19.649	30.343	47.228
198	16.93	-3.001	Mushie_AP	AP	3	342	1699	1296	1.286	3.249	25.774	25.097	20.891	30.901	47.962
199	19.5	-3.389	Oshwe_AP	AP	1	316	1569	1245	1.284	3.119	26.021	25.246	20.854	30.287	45.908
200	18.5	-3.05	Port Lotniczy	GV	1	344	1677	1281	1.290	2.589	26.851	25.293	21.852	30.176	47.706

201	22	-6.935	Tshibala AP	AP	3	862	1553	1262	1.201	3.256	23.406	23.609	19.292	29.934	48.860
202	21.75	-4.167	-	AP	1	442	1658	1216	1.374	3.200	24.234	23.673	19.124	29.955	45.628
203	21.75	-4.167	Kotakoli AP	AP	1	442	1658	1216	1.374	3.200	24.234	23.673	19.124	29.955	45.628
204	17.58	-4.138	_	AP	1	473	1645	1289	1.292	3.388	25.530	23.618	20.698	30.801	47.487
205	19.5	-4.084	Mangayi_AP	AP	1	390	1557	1235	1.298	3.234	25.840	25.240	20.643	30.304	45.364
206	23.11	-5.552		GV	3	643	1615	1246	1.292	3.301	25.641	24.438	20.071	31.166	46.272
207	20.78	-10	<u> </u>	GV	3	1103	1473	1432	1.028	4.912	16.300	22.008	14.206	29.680	57.008
208	19.6	-4.999	Idiofa AP	AP	3	608	1616	1290	1.301	4.600	22.464	23.198	19.373	28.930	49.909
209	21.58	-3.915	Idumbe AP	AP	3	593	1714	1217	1.415	3.200	24.365	23.634	19.269	29.966	45.582
210	18.4	-1.402	Isongo	GV	1	309	1960	1279	1.569	2.494	27.045	25.176	21.950	30.090	47.652
211	19.02	-7.334	Kahemba_AP	AP	1	1042	1634	1341	1.214	4.863	23.123	22.762	18.708	30.591	51.771
212	18.55	-7.617	Kajiji_AP	AP	1	1144	1638	1411	1.201	5.079	22.094	22.025	14.967	32.495	58.107
213	22.66	-8.347	Kapanga_AP	AP	1	869	1386	1316	1.034	4.432	19.449	23.721	17.229	29.562	50.354
214	22.03	-6.413	Kazumba_Ville	GV	3	802	1618	1264	1.289	3.279	23.435	23.710	19.304	29.958	48.902
215	17.03	-4.838	Kenge_AP	AP	2	546	1614	1299	1.221	5.849	22.054	23.394	18.890	29.621	44.676
216	20.31	-9.435	Catoca	GV	1	1058	1350	1420	0.925	4.900	16.600	22.228	14.200	29.600	56.800
217	21.43	-3.466	Dekese_AP	AP	1	405	1799	1232	1.505	3.200	25.721	23.971	20.559	30.246	45.140
218	22.26	-5.51	Demba_Ville	AP	3	608	1626	1254	1.307	3.237	23.661	23.782	19.297	30.011	48.249
219	21.24	-7.002	Diboko_AP	AP	3	649	1537	1339	1.181	4.804	24.249	24.215	19.394	31.126	50.970
220	23.32	-6.273	Bena_Beya_Ville	AP	4	758	1561	1379	1.156	4.693	23.134	24.411	19.201	30.777	50.047
221	20	-3.383	Bongimba	GV	1	333	1602	1237	1.314	3.153	25.973	24.674	20.787	30.287	45.367
222	17.99	-8.784	Cafunfo	GV	3	841	1575	1379	1.150	5.100	17.569	21.112	14.283	29.123	55.202
223	18.92	-8.374	Camaxilo	GV	1	1183	1625	1417	1.183	4.928	17.344	22.251	14.342	29.938	56.841
224	19.27	-10.28	Carimagua	GV	1	1208	1432	1398	1.018	4.976	15.949	21.624	14.132	28.778	55.581
225	20.34	-4.415	Brabanta GP	GP	0	0	0	0	0.000	0	0	0	0	0	0

4.3 Caractéristiques de la distribution spatiale du réseau de suivi météorologique

Les Figures et Tableaux ci-après présentent les caractéristiques de la distribution spatiale des stations en utilisant la méthode d'interpolation « Moyenne Pondérée de Distance Inverse Modifiée» sur une grille de 1 degré de résolution, Longitude : 15° à 26°, Latitude : -12° à 0°. La procédure de calcul de moyenne par la méthode de Distance Moyenne Pondérée Inverse donne à chaque station voisine un poids proportionnel à une puissance de l'inverse de la distance de la station. Ainsi, les stations les plus proches ont plus de poids dans la procédure d'établissement de la moyenne que les stations les plus éloignées. L'un des inconvénients de cette méthode est que l'influence de la station la plus proche devient assez forte si cette station est très proche du point du réseau par rapport aux autres stations de l'aire considérée. Cela conduit à la structure en forme de chapiteau du champ interpolé. Pour éviter cela, la méthode Moyenne Pondérée de Distance Inverse Modifiée utilisée dans cette étude ajoute un déplacement à la distance de chaque station. Cela signifie que même dans le voisinage immédiat d'une station, cette station ne supporte pas la majeure partie du poids, de sorte que la surface interpolée devient plus lisse et que les points singuliers (emplacement des stations) disparaissent.

La Figure 25 donne la représentation en 3D de la distribution spatiale des stations sur le BVK. Cette Figure démontre clairement que la distribution spatiale des stations existantes prend en compte les éléments de la variation spatiale tels que les reliefs, élévations et pentes; ce qui correspond aux normes de l'OMM, et surtout fournit des informations nécessaires pouvant permettre la mise en exergue des connaissances sur la variabilité climatique dans le BVK. Cette situation est bien illustrée à la Figure 26 et les Tableaux 4, 5,6 qui donnent le graphique des nuages des points, les classes de la distribution spatiale et les caractéristiques spatiales et statistiques des stations (et de la grille d'interpolation). Il ressort de ces résultats que l'ensemble de stations du BVK, sont contenues dans la frange d'altitude allant de 291 m à 1394 m (Données MERIT DEM); dont 12.4 % de stations sont situées à l'altitude de 200 - 400 m, représentant une superficie de 268614 km² (soit une densité de 0.0104 station/100km²); 24.88 % à l'altitude de 400 - 600 m, représentant une superficie de 539606 km² (soit une densité de 0.0103 station/100km²); 22.22% à l'altitude de 600 – 800 m, représentant une superficie de 196422 km² (soit une densité de 0.0254 station/100km²); 17.77 % à l'altitude de 800 -1000 m, représentant une superficie de 238565 km² (soit une densité de 0.0167 station/100 km²); 18.66 % à l'altitude de 1000 - 1200 m, représentant une superficie de 249646 km² (soit une densité de 0.0168 station/100 km²); et 4 % à l'altitude de 1200 – 1400 m, représentant une superficie de 84894 km² (soit une densité de 0.0106 station/100 km²). La distance moyenne entre stations est de 41.4 km et la distance maximale est évaluée à 84.3 km.

Les résultats obtenus montrent que la frange de pluies observées sur le BVK varie entre 1203 mm à 2017 mm (FAO), 1114 mm à 1911 mm (CHIRPS), avec la Pluie Moyenne Annuelle de 1541 mm (FAO), 1470 mm (CHIRPS) (Biais : -1.87 mm, Variance: 70.82 mm, RMS : 70.85 mm). Le Gradient Vertical Moyen est négatif autour de – 1.52 mm/ 100m. Le Gradient Horizontal

Moyen est de 79.67 mm/100 km, ce qui expliquerait 34. 89% de variance sur le BVK. Pour besoin de comparaison, une autre source de pluies CHIRPS a été utilisée.

Le Tableau 8 reprend les caractéristiques spatiales pour chacune des stations sur le BVK, en termes des éléments tels que Longitude, Latitude, Altitude, Pluie Moyenne Annuelle, Erreur Jackknife, Gradient Vertical, Gradient Horizontal, et la Direction

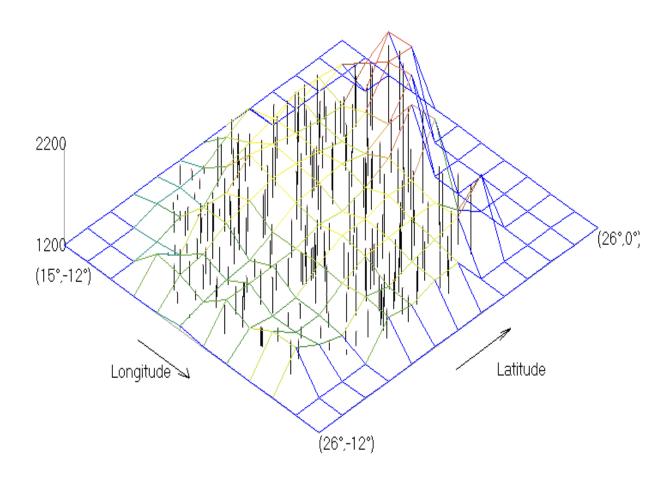
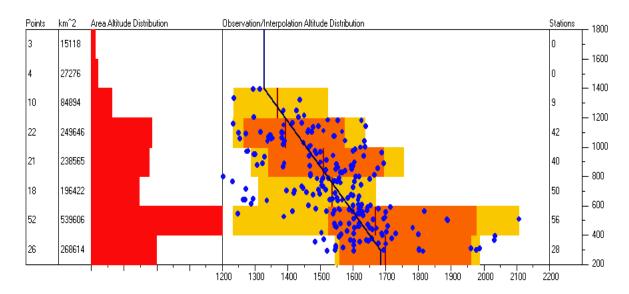



Figure 25. Représentation en 3D de la distribution spatiale des stations sur le BVK

Figure 26. Nuages des points et classes de la distribution spatiale des stations d'observation

Tableau 4. Résumé des caractéristiques spatiales et statistiques des stations en fonction des classes d'altitude

					5%		95%		
	Altitude		Area	Min	Percentile	Moyenne	Percentile	Max	
Class	[m]	Gridpoints	[km^2]	[mm]	[mm]	[mm]	[mm]	[mm]	Stations
8	1600 - 1800	3	15118						0
7	1400 - 1600	4	27276						0
6	1200 - 1400	10	84894	1236		1369.28		1522	9
5	1000 - 1200	22	249646	1233	1265.21	1393.98	1572.7	1635.76	42
4	800 - 1000	21	238565	1288.97	1341.9	1510.37	1693	1753.8	40
3	600 - 800	18	196422	1309.92		1536.03		1668.14	50
2	400 - 600	52	539606	1233.26	1523.49	1669.48	1976	2107	56
1	200 - 400	26	268614	1544.19	1558.54	1699.51	1960	1985.69	28

Tableau 5. Propriétés Station

Propriétés Station	Minimum	Moyen	Maximum
Observation [mm]	1203	1541	2107
Altitude [m]	290	737	1394
Distances [km]	0	41.4	84.3
Erreur Jackknife [mm]	-314	-0.59	417.3

Tableau 6. Propriétés Grille

Propriétés Grille	Minimum	Moyen	Maximum
Interpolation [mm]	1233	1555	2107
Altitude [m]	260	742	1720
Distances à la station la plus			
proche [km]	5.24	104	445
Gradient Vertical [mm/100m]	-100	-1.51	100
Variance Expliquée par le GV [%]	9.047	37.21	99.95
Erreur Jackknife [mm]	-314	14.65	417.3

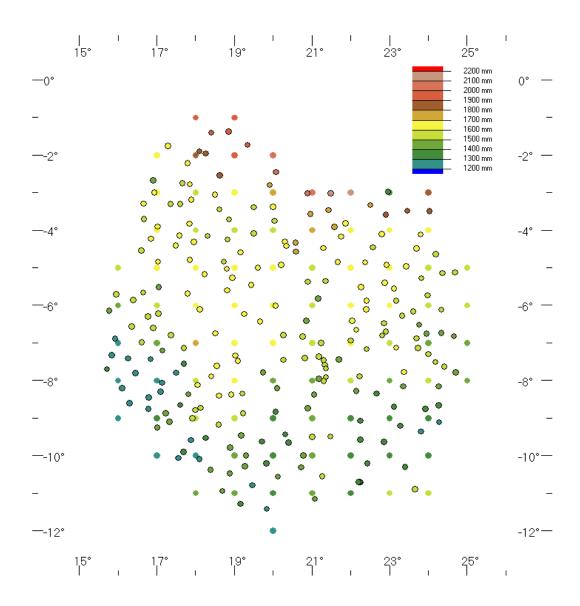


Figure 27. Distribution n spatiale des stations en fonction de la PMA

 Tableau 8.
 Caractéristiques spatiales et statistiques par station

ID	Long.	Lat.	Noms	Altitude [m]	PMA [mm]	Erreur Jackknife [mm]	Gradient Vertical [mm/100m]	Variance par le GV [%]	Gradient Horizontal [mm/100km	Direction Gradient [°]	Gradient Direction	Variance par le GH [%]
1	21	-9.5	СНІИМВО	1074.24	1541	-73.55	1	0.4	143	96	Е	0.6
2	21.26	-10.55	NOVA-CHAVES	1112.93	1509	-24.14	-999	0.4	143.46	96	Е	0.6
3	22.25	-10.71	LUAU	1064.48	1382	-27.28	0.7438	1	143.54	96	Е	0
4	22.23	-10.7	TEIXEIRA	1102.72	1381	9.16	0.7519	0.6	143.53	96	Е	0.3
5	22.2	-10.7	VILA-TEIXEIRA	1095.53	1381	4.19	0.6297	0.6	143.53	96	Е	0.4
6	17.55	-10.06	NOVA-GAIA	1160.26	1233	63.4	-0.0226	0.4	143.24	96	Е	0.5
7	19.3	-10	CACOLO	1321.93	1437	-34.07	-0.2539	0.3	37.59	254	W	0.3
8	20.81	-7.4	DUNDO	724.79	1599	-51.43	-0.1886	0.1	55.91	280	W	0.5
9	21.18	-7.36	CHIFUTO	651.92	1583	-35.37	-0.2434	0.3	37.91	279	W	0.1
10	21.36	-7.91	COSSA	787.82	1508	-10.85	-0.3344	0.5	38.52	39	NE	0.2
11	21.3	-7.46	CASSANGUIDI	764.21	1503	20.05	-0.3105	0.4	55.28	295	NW	0.2
12	21.33	-7.58	LUXILO	738.06	1503	23.78	-0.3236	0.4	50.77	293	NW	0.1
13	21.18	-7.96	MUSSOLEGI	785.7	1490	11.09	-0.6902	0.6	97.35	273	W	0.2
14	21.36	-7.68	ANDRADA	734.27	1508	15.46	-0.3243	0.4	50.04	291	W	0.1
15	21.3	-8.01	MALUDI	782.54	1505	-5.97	-0.3322	0.5	39.85	39	NE	0.2
16	16.78	-8.76	SUNGINGE	647.69	1295	25.46	0.0263	0	192.81	157	SE	0.9
17	20.1	-8.2	CAPAIA	1002.93	1466	-21.76	-999	0	192.77	157	SE	0.9
18	20.4	-9.65	SAURIMO	1061.78	1354	79.78	-0.2584	0	100.84	113	SE	0.6
19	16.1	-8.2	EBO	1060.82	1253	66.84	0.1485	0.4	100.5	113	SE	0.3
20	16.3	-8.6	BRITO-GODINS	1092.92	1271	-17.73	-0.0615	0.5	100.59	113	SE	0.3
21	17.1	-8.3	MARIMBA	766.87	1231	-2.54	-0.6849	0.2	177.15	119	SE	0.5
22	17.01	-9.25	QUELA	1165.64	1414	14.97	1	0.9	177.49	119	SE	0.1
23	18.6	-8.4	CAUNGULA	1000.71	1637	-38.96	0.0191	0	50.26	341	N	0.5
24	23.4	-10.3	KASAJI	1041.45	1390	132	-999	0	50.29	341	N	0.5

25	18.85	-1.38	IBEKE	299.05	1976	-3.79	-999	0	50.21	342	N	0.5
26	18.26	-1.96	INONGO	290.87	1814	-7.85	1	0.9	50.21	342	N	0.1
27	17.85	-2.78	MONGOBELE	293.92	1601	2.69	0.1986	0	161.78	53	NE	0.7
28	17.66	-2.75	NIOKI	293.85	1521	94.62	0.0583	0	111.48	29	NE	0.9
29	18.1	-1.9	SELENJE	301.1	1802	17.82	1	0.5	111.47	29	NE	0.5
30	22.5	-3.33	KOLE	451.17	1782	-170.14	-999	0.5	111.5	29	NE	0.5
31	23.46	-3.48	LODJA	507.46	1887	-177.95	-0.1965	0	111.5	29	NE	0.9
32	17.35	-3.3	BANDUNDU	315.17	1546	38.39	0.5071	0.2	62.91	241	SW	0.3
33	18.86	-3.71	BAMBINGA	327.15	1546	5.67	-0.0445	0	62.93	241	SW	0.3
34	20.58	-4.33	ILEBO	424.41	1702	-25.85	-0.2525	0.3	62.97	241	SW	0.2
35	21.66	-4.85	BENA-LONGO	580.58	1677	-36.27	0.3442	0.1	78.21	11	N	0.8
36	23.43	-4.96	LUSAMBO	479.64	1617	-4.01	0.0391	0	34.45	322	NW	0.7
37	17.6	-3.3	BENDELA	301.05	1544	7.97	0.3675	0.4	74.91	97	E	0.2
38	17.95	-4.31	GINGUNGI	356.65	1620	-69.56	0.4527	0.4	126.56	290	W	0.5
39	18.31	-4.15	DJUMA	370.07	1510	72.27	-0.2074	0.1	126.54	290	W	0.9
40	20.3	-4.3	BASONGO	378.82	1656	29.9	-0.6456	0.4	104.14	116	SE	0.5
41	21.35	-5.35	LUEBO	477.19	1561	26.28	-0.1763	0	104.27	116	SE	0.9
42	22.8	-4.1	BENA-DIBELE	449.54	1603	78.91	-999	0	104.12	116	SE	0.9
43	22.41	-5.88	KANANGA	592.74	1622	-0.65	-0.0168	0.2	104.35	116	SE	0.8
44	15.95	-5.71	KIMVULA	567.98	1543	-66.47	-0.2817	0.6	104.32	116	SE	0.4
45	16.65	-5.66	GOA	562.89	1519	-12.69	0.0314	0.1	62.68	205	SW	0.7
46	18.81	-5.6	KIKOMBO	448.08	1672	-37.63	0.0052	0	62.68	205	SW	0.8
47	18.8	-5.03	KIKWIT	464.69	1619	6.37	0.0509	0.1	78.82	169	S	0.9
48	18.95	-5.26	KIYAKA-PLATEAU	361.79	1646	-15.07	0.0147	0	56.5	194	S	0.7
49	20.85	-6.41	TSHIKAPA	604.31	1464	87.86	-0.3145	0	56.5	194	S	0.7
50	22.81	-6.8	MAZIA-MPATA	875.01	1599	-4.62	0.0378	0	31.09	22	N	0.4
51	23.95	-6.75	GANDAJIKA	803.09	1469	44.2	0.0851	0	88.28	257	W	0.7
52	23.7	-6.88	KAMBAYE	707.59	1517	-10.34	0.3415	0.4	66.25	267	W	0.3
53	23.61	-6.16	MBUJI-MAYI	548.31	1539	19.11	-0.143	0.1	85.27	332	NW	0.7

54	18.11	-6.1	FESHI	891.61	1693	-18	-999	0.1	85.27	332	NW	0.7
55	19.25	-6.23	KISANDJI	809.67	1665	-12	-999	0.1	85.27	332	NW	0.7
56	22.4	-6.1	KABWE	570.75	1619	5.19	-0.0876	0.7	11.33	282	W	0.1
57	22.9	-6.7	KAMPONDE	851.01	1595	-7.63	0.3438	0.8	17.63	60	NE	0.2
58	22.41	-7.16	LUISA	829.3	1561	27.67	-0.1955	0.2	17.64	60	NE	0.6
59	23.73	-7.13	LUPUTA	849.24	1547	14.82	0.3316	0.5	64.54	243	SW	0.3
60	24.18	-7.51	KANIAMA	864.71	1552	-22.25	-0.3058	0.4	65.81	31	NE	0.3
61	24.41	-7.63	SAINTE-WALBURGE	943.53	1538	-47.94	-0.4063	0.7	65.82	31	NE	0.1
62	16.9	-6.6	KINGUNDA	571.83	1560	-53.37	0.1469	0.2	66.16	1	N	0.3
63	24	-7.3	KISAMBA	772.98	1543	-26.33	0.2816	0.4	80.39	237	SW	0.3
64	22.85	-9.63	SANDOA	889.7	1323	20.55	-0.2971	0.3	80.73	237	SW	0.4
65	15.84	-7.331	ED	953.49	1300	24.26	0.1465	0.4	80.39	237	SW	0.4
66	17.49	-4.402	ED	450.26	1651	-18.93	0.011	0	24.73	310	NW	0.2
67	21.29	-4.477	ED	521.18	1698	-8.77	0.1948	0.3	47.73	303	NW	0.6
68	23.35	-8.157	ED	975.36	1484	-27.04	-0.0819	0	47.97	303	NW	0.9
69	24.7	-7.788	ED	955.33	1488	16.13	-0.63	0.4	47.94	303	NW	0.6
70	20.12	-10.56	ED	1252.95	1427	-35.5	-0.704	1	48.2	303	NW	0
71	21.69	-7.439	ED	898.86	1500	19.04	-0.0978	0.1	39.88	32	NE	0.4
72	24.66	-6.82	ED	720.87	1447	15.68	-999	0.1	39.86	32	NE	0.4
73	24.27	-8.153	ED	942.61	1466	-14.29	-0.9321	0.4	148.2	66	NE	0.5
74	23.76	-6.514	ED	581.08	1485	37.95	0.001	0	69.81	291	W	0.6
75	17.84	-3.824	ED	358.6	1601	-35.8	0.59	0.6	68.56	250	W	0.2
76	17.79	-5.685	ED	857.71	1675	-2.26	-999	0.6	68.72	250	W	0.2
77	19.09	-7.478	ED	1000.15	1622	-61.47	0.738	0.7	68.94	250	W	0.1
78	19.66	-6.431	ED	603.49	1653	-29.2	0.1365	0.2	68.81	250	W	0.4
79	18.51	-6.746	ED	963.41	1687	-999	-999	0.2	68.85	250	W	0.4
80	20.26	-7.453	ED	827.99	1567	-16.06	-0.3484	1	68.94	250	W	0
81	23.69	-4.489	ED	559.04	1629	-4.8	-0.3431	0.1	68.61	250	W	0.4
82	17.81	-8.365	ED	674.79	1477	-117.83	1	0.5	268.89	83	E	0.4

83	23.11	-8.704	ED	1070.3	1344	21.07	-0.3336	0.2	269.12	83	E	0.6
84	20.88	-3.02	ED	396.79	2033	-192.51	1	0.9	266.44	83	E	0
85	22.57	-4.458	ED	579.89	1556	76.85	0.0815	0	266.87	83	E	0.7
86	19.83	-11.42	ED	1334.51	1236	79	-999	0	271.36	83	E	0.7
87	22.25	-9.577	ED	1080.34	1347	-2.72	0.1136	1	269.77	83	E	0
88	18.26	-9.528	ED	888.73	1389	58.08	-0.033	0	271.4	22	Ν	0.9
89	16.77	-6.299	ED	478.73	1542	-13.4	0.0502	0.2	51.39	108	E	0.6
90	17.89	-3.182	ED	459.35	1614	17.32	1	0.4	87.62	74	E	0.5
91	23.17	-7.126	ED	898.99	1604	-12.73	0.34	0.7	34.54	291	W	0.3
92	20.06	-8.829	ED	1022.05	1385	23.51	-999	0.7	34.67	290	W	0.3
93	22.23	-7.886	ED	913.26	1518	-72.66	0.3469	0.2	34.59	290	W	0.8
94	19.15	-4.586	ED	512.97	1601	-13.97	0.034	0	71.55	173	S	0.9
95	20.03	-3.747	ED	479.73	1588	18.02	0.2597	0	71.55	173	S	0.9
96	20.89	-8.74	ED	872.9	1467	2	-999	0	71.56	173	S	0.9
97	22.43	-10.2	ED	1041.99	1338	24.59	0.252	0.7	44.09	128	SE	0.3
98	22.24	-9.072	ED	1082.5	1346	1	-999	0.7	43.99	128	SE	0.3
99	20.89	-5.371	GP_Banga	461.09	1545	-15.14	-999	0.7	43.77	128	SE	0.3
100	24.36	-5.138	ED	639.46	1566	-14.06	-0.4922	0.8	43.76	128	SE	0.2
101	20.96	-3.568	ED	413.83	1730	167.48	-1	0.5	43.7	128	SE	0.4
102	22.37	-4.859	ED	507.28	1660	-46.87	0.4145	0	43.75	128	SE	0.9
103	20.06	-6.005	GP_Banga	590.01	1644	9	-999	0	43.8	128	SE	0.9
104	21.16	-5.82	ED	680.69	1497	-31.11	-0.641	0.9	43.79	128	SE	0.1
105	22.87	-5.404	ED	663.23	1618	-1.66	-0.0134	0	20.41	305	NW	0.8
106	16.79	-8.446	ED	641.23	1263	22.56	-0.153	0.1	190.39	173	S	0.7
107	17.32	-9.097	ED	730.18	1443	-50.39	0.2797	0.3	156.86	94	Е	0.4
108	16.84	-7.434	ED	642.54	1270	90.91	0.165	0	282.23	9	N	0.9
109	17.04	-6.217	ED	882.77	1548	-17.23	-0.0208	0	51.32	201	S	1
110	17.36	-6.794	ED	788.04	1557	-16.31	0.1912	0.2	51.33	201	S	0.8
111	19.43	-5.453	ED	744.42	1624	-0.5	-0.1506	0.5	51.31	201	S	0.5

112	19.2	-8.344	ED	1107.12	1566	45.61	-0.2674	0.4	51.35	201	S	0.6
113	18.59	-9.172	ED	1045.31	1575	-64.47	-0.0872	0	158.14	4	N	0.7
114	18.88	-10.47	ED	1166.38	1443	-4.06	-0.3381	0.5	22.8	297	NW	0
115	17.69	-9.899	ED	878.33	1306	42.58	-0.305	0.5	22.76	297	NW	0
116	18.23	-5.171	ED	781.27	1650	17.35	0.1243	0.5	36.57	165	S	0.2
117	16.45	-7.803	ED	548.18	1247	33.34	-0.062	0.8	36.58	165	S	0.1
118	15.71	-7.696	ED	1098.18	1384	-111.49	-0.0511	0.2	36.58	165	S	0.3
119	20.72	-10.31	ED	1137.74	1477	-5.98	-0.3805	0.7	36.6	164	S	0.1
120	23.28	-9.208	ED	1101.93	1316	10.53	0.1249	0.1	36.59	165	S	0.4
121	23.81	-9.355	ED	976.09	1279	37.83	-0.2743	0.4	36.59	164	S	0.3
122	16.6	-4.546	GP_Bukanga Lonzo	668.91	1600	22.37	-999	0.4	36.56	165	S	0.3
123	17.02	-3.903	ED	400.99	1689	-99.6	0.451	0.7	35.29	99	E	0.2
124	19.46	-10.79	ED	1394.97	1295	26.53	-0.5801	0.9	18.46	116	SE	0
125	15.92	-6.892	ED	971.55	1273	150.28	0.09	0	18.3	116	SE	0.3
126	19.34	-1.729	ED	311.32	1986	-10	-999	0	18.2	116	SE	0.3
127	17.29	-1.757	ED	364.91	1640	53	-999	0	18.2	116	SE	0.3
128	16.91	-2.675	ED	356.3	1483	173.85	-999	0	18.21	116	SE	0.3
129	17.79	-2.213	ED	297.39	1693	-16.29	-0.511	0	251.75	44	NE	1
130	18.61	-3.443	ED	407.7	1563	47.24	-999	0	251.88	44	NE	1
131	18.62	-2.539	ED	305.09	1801	-59.56	-999	0	251.78	44	NE	1
132	16.66	-3.293	ED	413.82	1601	-2.48	0.4048	0	70.06	150	SE	0.1
133	20.07	-2.452	ED	367.88	2031	-314	-999	0	70.05	150	SE	0.1
134	21.48	-3.014	ED	510.02	2107	-197.78	-999	0	70.05	150	SE	0.1
135	21.86	-3.812	ED	556.08	1699	-4.05	-0.1125	0	70.07	150	SE	0.1
136	22.96	-2.975	ED	527.21	1388	445.3	0.3077	0.1	70.05	150	SE	0.1
137	22.9	-3.592	ED	565.41	1818	-193.43	-1	0.1	70.06	150	SE	0.1
138	23.8	-4.111	ED	513.84	1693	69.16	-1	1	70.08	150	SE	0
139	24.19	-4.637	ED	561.33	1598	34.48	-1	1	70.09	150	SE	0
140	22.92	-4.921	ED	581.73	1618	-15.44	-0.1249	0.1	67.99	210	SW	0.5

141	23.17	-5.877	ED	603.19	1599	-16.54	0.0771	0.1	67.61	308	NW	0.9
142	23.98	-5.733	ED	685.74	1545	2.06	-0.1477	0.3	67.6	308	NW	0.6
143	23.82	-5.276	ED	573.67	1587	-1.62	-0.3415	1	67.57	308	NW	0
144	24.69	-5.122	ED	643.34	1529	50.62	-999	1	67.56	308	NW	0
145	24.33	-6.73	ED	691.49	1458	16.76	0.1846	0.2	50.76	269	W	0.3
146	23.37	-7.772	ED	985.68	1606	-68.97	-999	0.2	50.87	269	W	0.3
147	23.92	-8.759	ED	936.65	1328	73.83	-0.8385	0.4	51	269	W	0.2
148	23.66	-10.89	ED	1185.69	1522	-132	-999	0.4	51.33	269	W	0.2
149	21.47	-9.487	ED	1077.21	1543	-2	-999	0.4	51.11	269	W	0.2
150	21.07	-11.15	ED	1145.25	1493	16	-999	0.4	51.38	269	W	0.2
151	18.1	-10.09	ED	1204.81	1296	78.59	-0.0613	0	217.53	106	E	1
152	17.88	-9.584	ED	950.34	1296	121.76	-0.3944	0.2	207.04	6	Ν	0.6
153	17.91	-9.005	ED	974.25	1599	-104.92	0.2325	0.1	191.95	28	NE	0.5
154	19.18	-9.467	ED	1117.9	1464	20.26	-0.2043	0.1	115.54	325	NW	0.6
155	18.89	-9.782	ED	1032.65	1448	9.02	0.0003	0	79.05	26	NE	0.3
156	19.22	-8.865	ED	1184.11	1552	27.44	0.3175	0.1	79.01	26	NE	0.3
157	19.82	-10.21	ED	1249.94	1387	13.18	-0.3363	0.3	13.25	303	NW	0
158	19.71	-9.625	ED	1152.06	1387	25.2	0.2096	0.2	92.93	316	NW	0.7
159	18.13	-8.728	ED	872.88	1594	-44.01	0.5122	0.6	108.01	16	Ν	0.2
160	17.6	-8.651	ED	635.9	1336	55.01	0.7228	0.3	177.19	100	E	0.4
161	17.23	-8.871	ED	687.68	1419	-79.1	0.3648	0.3	167.81	116	SE	0.4
162	18.05	-8.118	ED	798.39	1607	-129.81	0.691	0.7	100.88	148	SE	0.1
163	16.26	-7.408	ED	615.46	1288	23.55	0.1024	0	108.77	34	NE	0.2
164	17.14	-7.201	ED	565.34	1414	3.52	0.1439	0	300.94	17	Ν	0.9
165	16.61	-6.978	ED	765.38	1550	-181.22	-0.2902	0.1	222.7	9	N	0.7
166	17.7	-7.553	ED	704.36	1396	64.2	0.4776	0.1	222.71	9	N	0.7
167	17.7	-7.131	ED	654.18	1550	-151.2	0.3982	0.1	222.7	9	N	0.7
168	16.39	-5.861	ED	415.08	1503	32.09	-0.1519	0.2	46.7	97	E	0.2
169	16.35	-6.566	ED	842.76	1517	-115.02	-0.399	0.5	112.1	131	SE	0.3

170	15.77	-6.148	ED	702.07	1421	102.95	0.0176	0	112.05	131	SE	0.6
171	17.05	-5.517	ED	708.22	1493	60.97	-0.0676	0.1	111.98	131	SE	0.6
172	20.26	-6.786	ED	673.86	1594	-34.94	0.0425	0	112.13	131	SE	0.6
173	19.74	-7.78	ED	967.03	1500	45.25	-0.1433	0	112.27	131	SE	0.6
174	18.82	-4.248	ED	456.64	1549	28.36	0.3032	0.3	38.38	145	SE	0.3
175	20.21	-4.924	GP_Banga	548.98	1620	69.83	-0.2706	0.4	155.61	138	SE	0.5
176	20.59	-4.568	ED	463.37	1705	-32.81	-0.1635	0.1	60.78	54	NE	0.6
177	22.14	-6.651	ED	766.41	1603	-11.99	-0.146	0.3	34.64	35	NE	0.2
178	24.03	-3.487	ED	500.45	1889	-95.52	-999	0.3	34.58	35	NE	0.2
179	16.85	-4.223	GP_Bukanga Lonzo	535.67	1630	-13.64	-0.1916	0.2	43.41	107	Е	0.2
180	16.67	-3.699	ED	428.51	1581	62.39	-0.1672	0.1	43.38	107	Е	0.2
181	20.76	-6.83	ED	637.88	1552	-23.54	1	0.7	38.71	211	SW	0.1
182	22.14	-8.283	ED	1011.2	1469	-13.88	-999	0.7	38.75	211	SW	0.1
183	18.4	-7.89	ED	939.65	1632	-10.21	0.0582	0.5	38.74	211	SW	0.1
184	21.05	-8.369	ED	818.92	1469	18.75	-0.387	0.8	38.75	211	SW	0
185	24.27	-8.666	ED	1071.35	1341	-65.82	-0.8928	0.6	38.76	211	SW	0.1
186	17.5	-7.792	ED	714.58	1272	126.29	-0.4923	0.1	320.12	83	E	0.8
187	24.28	-9.111	ED	1100.95	1249	82.54	0.199	0.2	321.2	83	E	0.7
188	17.13	-8.062	ED	798.53	1203	38.16	-0.229	0.5	320.33	83	E	0.4
189	18.38	-10.38	ED	1101.79	1461	-47.62	-0.7277	0.1	322.41	83	E	0.8
190	18.69	-10.94	ED	1218.45	1450	-41.9	-0.5149	1	322.99	83	E	0
191	19.16	-11.28	ED	1394.62	1315	-65.25	-1	0.7	323.36	83	E	0.3
192	19.91	-2.799	Bolongonkele	378.65	1717	66.45	1	0.9	317.59	83	E	0.1
193	22.86	-6.478	Tshimbulu_Ville	866.08	1596	-0.24	-0.0335	0.1	38.47	250	W	0.6
194	24.33	-6.117	Tunta_AP	787.2	1525	-27.15	-0.1531	0.1	38.44	250	W	0.6
195	18.73	-4.835	Lusanga_PLT	364.56	1592	3.99	0.0823	0.1	91.6	162	S	0.9
196	20.78	-10	Waco	1103.38	1473	-0.3	0.7813	0.1	91.7	162	S	0.9
197	17.85	-4.787	MasiManimba_AP	571.23	1642	1.9	0.0481	0.4	91.6	162	S	0.6
198	16.93	-3.001	Mushie_Airport	341.55	1699	-170.93	0.6531	0.3	91.58	162	S	0.7

199	19.5	-3.389	Oshwe_AP	315.64	1569	43.4	0.0634	0	111.21	12	N	0.9
200	18.5	-3.05	Port Lotniczy	344.48	1677	-16.64	-0.6531	0.2	111.21	12	N	0.7
201	22	-6.935	Tshibala_AP	862.01	1553	-16.54	-0.8744	0.9	111.24	12	N	0.1
202	21.75	-4.167	Kotakoli_AP	441.57	1658	0.11	0.2632	0.5	59.59	301	NW	0.4
203	21.75	-4.167	Kotakoli_AP	441.57	1658	0.11	0.2632	0.5	59.59	301	NW	0.4
204	17.58	-4.138	Lunkuni_AP	472.51	1645	2.87	0.1056	0.1	78.01	260	W	0.9
205	19.5	-4.084	Mangayi_AP	390.16	1557	13.93	0.1201	0.2	78.01	260	W	0.7
206	23.11	-5.552	Dimbelenge_Ville	643.23	1615	-3.45	-0.0172	0	78.17	260	W	0.9
207	20.78	-10	Waco	1103.38	1473	-0.3	0.7813	0.1	78.98	260	W	0.8
208	19.6	-4.999	Idiofa_AP	607.94	1616	3.83	-0.0447	0.1	78.1	260	W	0.8
209	21.58	-3.915	Idumbe_AP	593.31	1714	-36.21	-0.302	0.1	70.59	337	NW	0.4
210	18.4	-1.402	Isongo	309.31	1960	-88.12	1	0.1	70.56	337	NW	0.4
211	19.02	-7.334	Kahemba_AP	1042.42	1634	-5.44	-999	0.1	70.65	337	NW	0.4
212	18.55	-7.617	Kajiji_AP	1144.03	1638	-4.26	0.0973	0.7	70.66	337	NW	0.1
213	22.66	-8.347	Kapanga_AP	869.29	1386	147.48	-1	0.9	70.68	337	NW	0.1
214	22.03	-6.413	Kazumba_Ville	801.58	1618	-39.31	-0.2079	0.8	70.63	337	NW	0.1
215	17.03	-4.838	Kenge_AP	545.66	1614	3.3	-0.5011	0.7	70.6	337	NW	0.1
216	20.31	-9.435	Catoca	1058.13	1350	59.49	0.0139	0	70.71	337	NW	0.4
217	21.43	-3.466	Dekese_AP	404.53	1799	159.64	-0.9023	0.2	485.32	30	NE	0.7
218	22.26	-5.51	Demba_Ville	607.55	1626	-2.88	-0.2559	0.7	485.66	30	NE	0.3
219	21.24	-7.002	Diboko_AP	649.39	1537	-39.11	-0.0815	0	139.51	231	SW	0.5
220	23.32	-6.273	Bena_Beya_Ville	758.2	1561	20.49	0.1972	0.3	86.02	327	NW	0.6
221	20	-3.383	Bongimba	333.44	1602	19.97	-0.0145	0	85.91	327	NW	0.9
222	17.99	-8.784	Cafunfo	841.07	1575	-55.73	0.5201	0.6	117.06	18	N	0.2
223	18.92	-8.374	Camaxilo	1182.84	1625	-75.71	-0.3828	0.9	117.05	18	N	0.1
224	19.27	-10.28	Carimagua	1207.65	1432	-19.34	-0.3344	0.5	42.62	351	N	0.1
225	20.34	-4.415	Brabanta GP	409.38	1688	-5.28	-0.276	0.2	42.61	351	Ν	0.1

4.4 Scenarios d'optimisation

4.4.1 Priorisation par types des caractéristiques climatiques

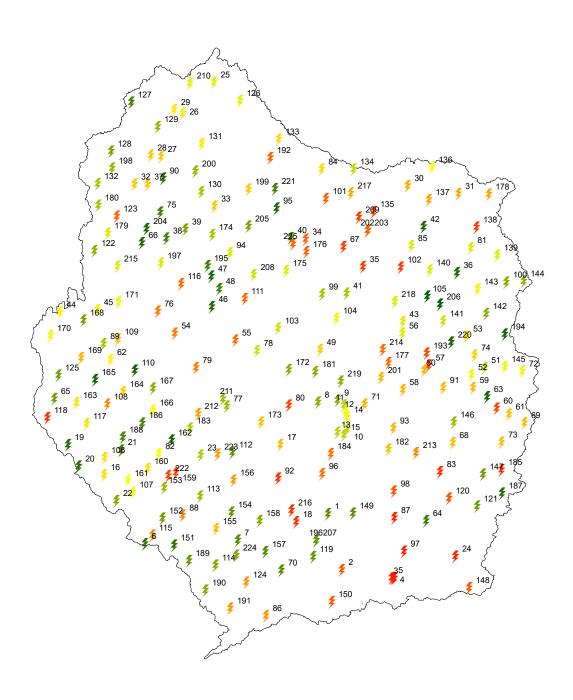
Les figures ci-après 28 (a-h) présentent différents scenarios d'optimisation en tenant compte de la combinaison des caractéristiques spatiales et la moyenne annuelle des variables climatiques pour chaque station retenue (voir Tableau 3). L'optimisation est réalisée sur la base de l'algorithme de Ward. Cette méthode consiste à réunir les deux clusters dont le regroupement fera la moins baisser l'inertie interclasse. Si on peut considérer E comme un nuage d'un espace R^p, on agrège les individus qui font le moins varier l'inertie intra-classe. A chaque pas, on cherche à obtenir un minimum local de l'inertie intraclasse ou un maximum de l'inertie inter-classe. L'indice de dissimilarité entre deux classes (ou niveau d'agrégation de ces deux classes) est alors égal à la perte d'inertie inter-classe résultant de leur regroupement. On calcule cette inertie entre les classes :

- G_A = centre de gravité de la classe A (poids P_A)
- G_B = centre de gravité de la classe B (poids P_B)
- GAB = centre de gravité de leur réunion

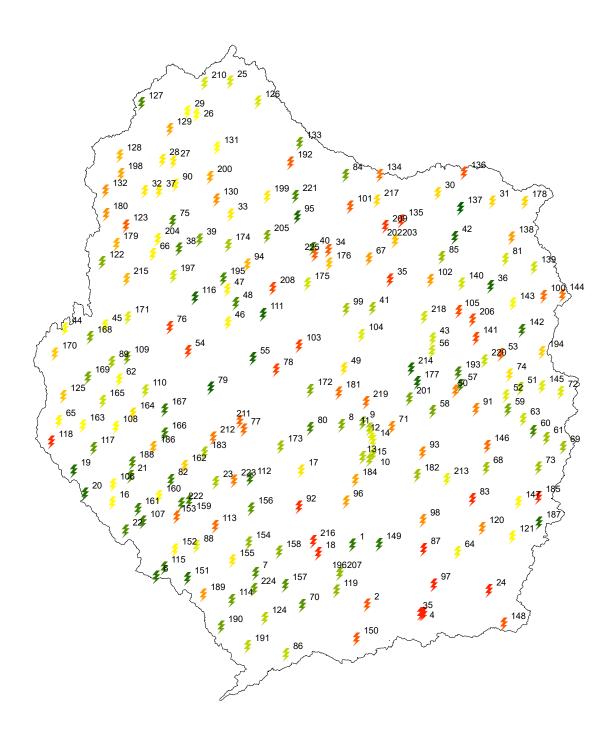
$$G_{AB} = \frac{P_A G_A + P_B G_B}{P_A + P_B}$$

L'intertie inter-classe étant la moyenne des carrés des distances des centres de gravité des classes au centre de gravité total, la variation d'inertie inter-classe, lors du regroupement de A et B est égale à :

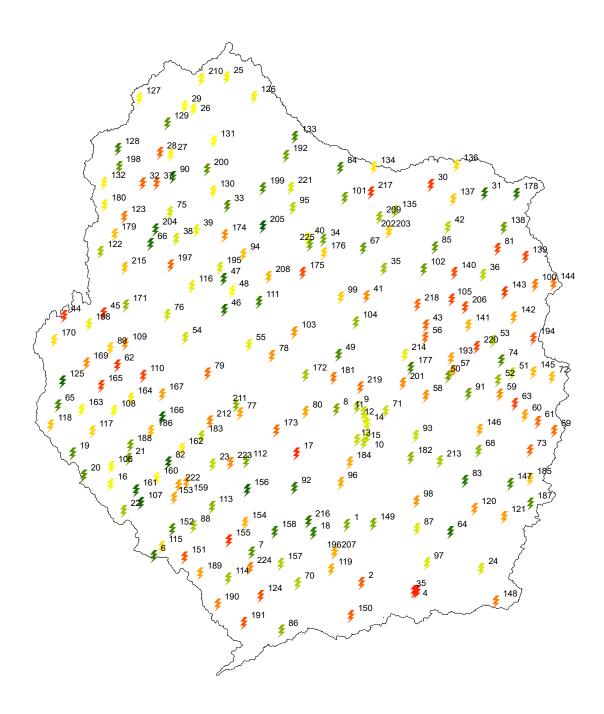
$$P_A d^2(G_A, G) + P_B d^2(G_A, G) - (P_A + P_B) d^2(G_{AB}, g)$$

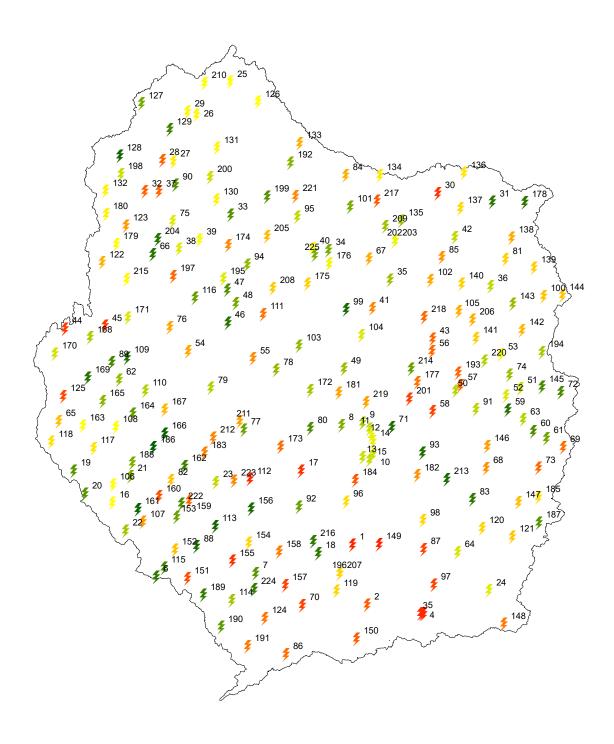

Elle vaut:

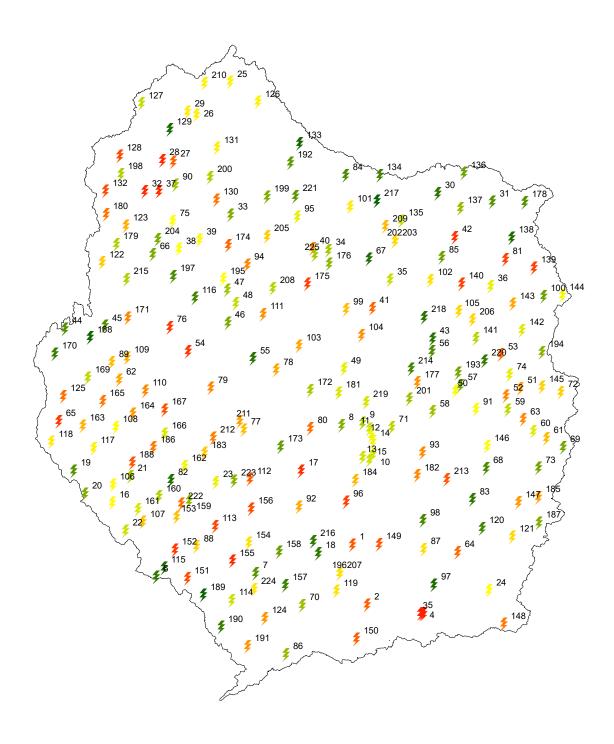
$$\Delta(A,B) = \frac{P_A P_B}{P_A + P_B} d^2(G_A, G_B)$$

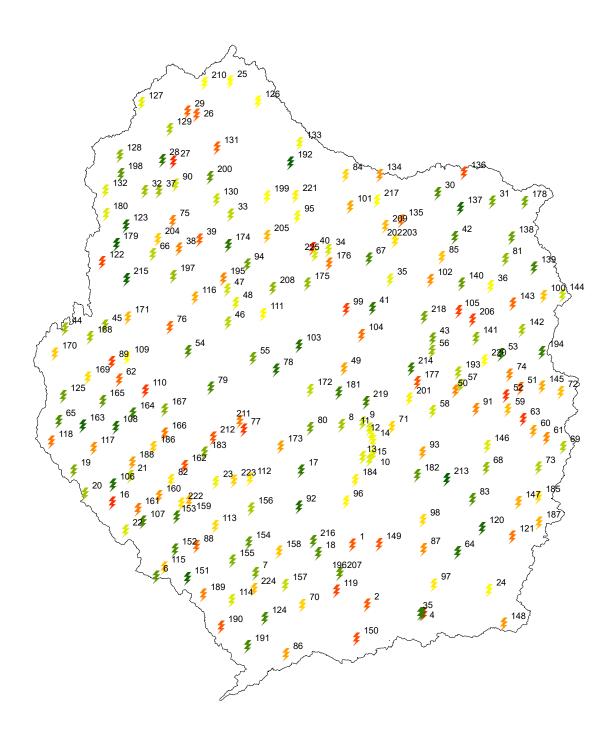

A chaque itération, on agrège de manière à avoir un gain minimum d'inertie intra-classe Δ (A, B)=perte d'inertie intra-classe due à cette agrégation.

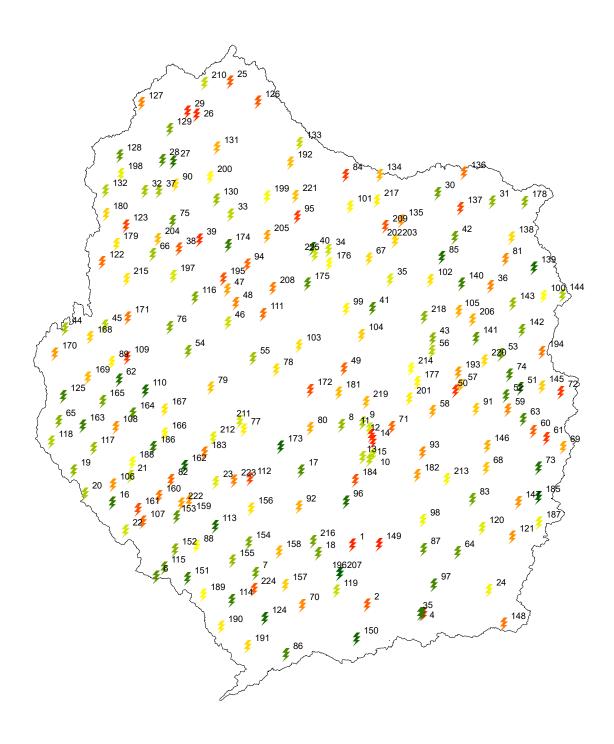
Dans les figures ci-après, les grappes qui résultent de l'optimisation représentent des stations des caractéristiques similaires (regroupement des stations avec une même légende). Les options d'optimisation en termes de nombres des stations (50, 75, 100, 125, 150, 175, 200,


223 stations) sont choisies d'une manière aléatoire. L'option 223 représente le nombre de stations qui ne peuvent être dépassées dans l'optimisation.


Figure 28a. Réseau optimal représentant 50 ensembles de stations des caractéristiques similaires


Figure 28b. Réseau optimal représentant 75 ensembles de stations des caractéristiques similaires


Figure 28c. Réseau optimal représentant 100 ensembles de stations des caractéristiques similaires


Figure 28d. Réseau optimal représentant 100 ensembles de stations des caractéristiques similaires

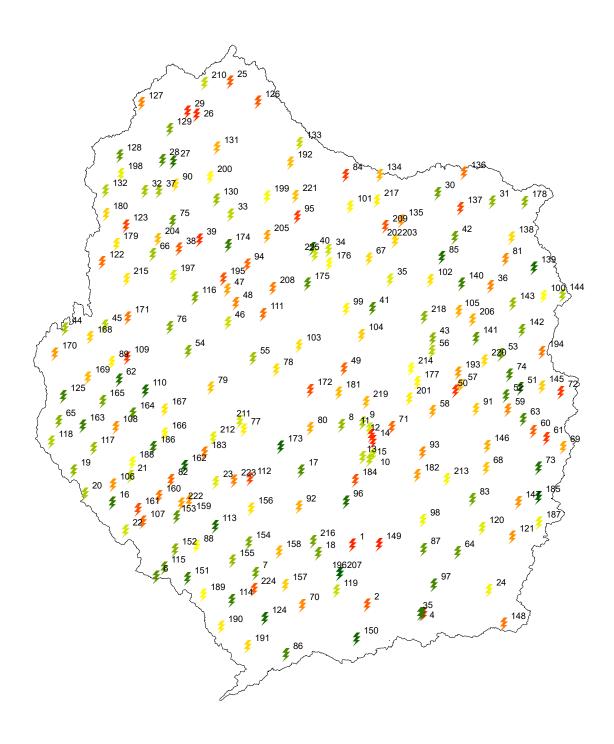

Figure 28e. Réseau optimal représentant 150 ensembles de stations des caractéristiques similaires

Figure 28f. Réseau optimal représentant 175 ensembles de stations des caractéristiques similaires

Figure 28g. Réseau optimal représentant 200 ensembles de stations des caractéristiques similaires

Figure 28h. Réseau optimal représentant 223 ensembles de stations des caractéristiques similaires

4.4.2 Priorisation des stations par sous bassins

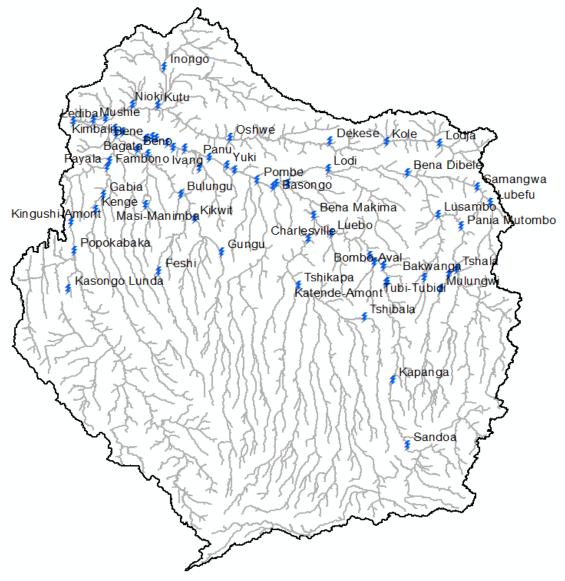
La priorisation des stations par sous bassins se fait en fonction d'un critère de pondération qui tient compte des stations existences ayant un record des données historiques (AS=5), des stations représentant de grandes villes (GV=4), des stations représentant des aéroports principaux (AP=3), des stations représentant de grandes plantations (GP=2), et des stations représentant les gradients d'élévation dominante (ED=1). Suivant ce critère, le sous bassin qui reçoit le score de la plus grande pondération obtiendrait une priorité absolue en termes d'investissement.

Tableau 9. Priorisation des stations par sous bassins

		Τv	/pe-P	ondé	ratio	n-			
	ous	-	•		Statio				
Bas	ssins	AS	GV	AP	GP	ED	Valeur Pondérée	Priorité [%]	Catégorie
No	Code	5	4	3	2	1			
1	K12	1	0	0	0	3	8	3.6	Prioritaire
2	K13	0	0	0	0	1	1	0.4	Primaire
3	K40	0	0	0	0	1	1	0.4	Primaire
4	K52	0	0	1	0	1	4	1.8	Prioritaire
5	K81	2	0	0	0	1	11	4.9	Très Prioritaire
6	K83	0	0	0	0	2	2	0.9	Primaire
7	K84	2	0	0	0	1	11	4.9	Très Prioritaire
8	K85	0	0	0	0	2	2	0.9	Primaire
9	K89	0	0	0	0	1	1	0.4	Primaire
10	K90	7	0	1	0	0	38	16.9	Extrêmement Prioritaire
11	K91	1	0	0	0	2	7	3.1	Prioritaire
12	K92	0	0	0	0	1	1	0.4	Primaire
13	K93	4	0	1	0	1	24	10.7	Assez Prioritaire
14	K106	1	0	0	0	0	5	2.2	Prioritaire
15	K107	0	0	0	0	1	1	0.4	Primaire
16	K115	0	0	0	0	0	0	0.0	Primaire
17	K116	2	0	0	0	0	10	4.4	Très Prioritaire
18	K117	0	0	0	0	1	1	0.4	Primaire
19	K118	0	0	1	0	1	4	1.8	Prioritaire
20	K119	0	0	0	0	1	1	0.4	Primaire
21	K124	1	0	0	0	0	5	2.2	Prioritaire
22	K125	1	0	0	0	1	6	2.7	Prioritaire
23	K126	1	0	0	0	2	7	3.1	Prioritaire
24	K127	1	0	0	0	5	10	4.4	Très Prioritaire
25	K128	1	0	0	0	0	5	2.2	Prioritaire
26	K140	0	1	0	0	5	9	4.0	Très Prioritaire
27	K141	1	0	1	0	0	8	3.6	Prioritaire
28	K142	0	0	0	0	1	1	0.4	Primaire
29	K153	3	0	0	0	0	15	6.7	Très Prioritaire
30	K154	1	0	1	2	1	13	5.8	Très Prioritaire
31	K155	0	0	0	0	1	1	0.4	Primaire
32	K157	1	0	3	0	2	16	7.1	Très Prioritaire

33	K211	0	0	0	0	2	2	0.9	Primaire
34	K212	0	0	0	0	0	0	0.0	Primaire
35	K213	0	0	0	0	3	3	1.3	Prioritaire
36	K214	2	0	0	0	3	13	5.8	Très Prioritaire
37	K215	1	0	0	0	1	6	2.7	Prioritaire
38	K216	0	2	1	0	2	13	5.8	Très Prioritaire
39	K217	3	2	0	0	2	25	11.1	Assez Prioritaire
40	K223	2	0	1	0	3	16	7.1	Très Prioritaire
41	K224	1	0	0	0	1	6	2.7	Prioritaire
42	K225	0	0	0	0	0	0	0.0	Primaire
43	K238	0	0	0	0	2	2	0.9	Primaire
44	K242	0	0	0	0	3	3	1.3	Prioritaire
45	K252	0	0	0	0	3	3	1.3	Prioritaire
46	K253	0	0	1	0	0	3	1.3	Prioritaire
47	K254	1	1	0	0	0	9	4.0	Très Prioritaire
48	K255	0	2	0	0	3	11	4.9	Très Prioritaire
49	K256	2	0	0	0	1	11	4.9	Très Prioritaire
50	K257	1	0	0	0	2	7	3.1	Prioritaire
51	K258	0	0	1	0	6	9	4.0	Très Prioritaire
52	K259	5	0	0	0	0	25	11.1	Assez Prioritaire
53	K264	1	0	0	1	0	7	3.1	Prioritaire
54	K290	0	0	0	0	3	3	1.3	Prioritaire
55	K291	0	0	1	0	3	6	2.7	Prioritaire
56	K292	1	0	0	0	3	8	3.6	Prioritaire
57	K294	0	0	0	0	2	2	0.9	Primaire
58	K295	0	0	0	1	0	2	0.9	Primaire
59	K296	0	0	0	0	1	1	0.4	Primaire
60	K297	1	1	1	0	1	13	5.8	Très Prioritaire
61	K298	0	2	1	0	1	12	5.3	Très Prioritaire
62	K299	4	0	0	0	2	22	9.8	Assez Prioritaire
63	K300	0	0	0	0	3	3	1.3	Prioritaire
64	K301	0	0	0	0	3	3	1.3	Prioritaire
65	K302	0	0	0	0	0	0	0.0	Primaire
66	K303	0	0	0	0	2	2	0.9	Primaire
67	K304	0	0	0	0	3	3	1.3	Prioritaire
68	K305	0	0	0	0	0	0	0.0	Primaire
69	K306	1	0	0	0	0	5	2.2	Prioritaire
70	K307	0	0	0	0	2	2	0.9	Primaire
71	K308	0	0	0	0	3	3	1.3	Prioritaire
72	K309	0	0	0	0	2	2	0.9	Prioritaire
73	K310	0	1	0	0	1	5	2.2	Prioritaire
74	K311	1	0	0	0	1	6	2.7	Prioritaire
75	K312	0	0	0	0	0	0	0.0	Primaire
76	K313	0	0	0	0	1	1	0.4	Primaire
77	K314	1	0	1	0	1	9	4.0	Très Prioritaire
78	K315	2	0	0	1	0	12	5.3	Très Prioritaire
79	K322	1	0	0	0	0	5	2.2	Prioritaire
80	K323	0	0	0	0	1	1	0.4	Primaire
81	K324	0	0	1	0	0	3	1.3	Prioritaire

82	K352	0	0	0	0	0	0	0.0	Primaire
83	K360	0	0	0	0	0	0	0.0	Primaire
84	K361	0	0	0	0	0	0	0.0	Primaire
85	K362	0	0	0	0	2	2	0.9	Primaire
86	K363	0	0	0	2	1	5	2.2	Prioritaire
87	K379	0	0	0	0	1	1	0.4	Primaire
88	K385	0	1	0	0	0	4	1.8	Prioritaire
89	K386	1	0	0	0	1	6	2.7	Prioritaire
90	K390	0	0	0	0	1	1	0.4	Primaire
91	K398	1	0	1	0	1	9	4.0	Très Prioritaire
To	otal	64	13	19	7	122	225	100	


5. Conception du réseau de suivi hydrométrique

5.1 Le réseau historique de suivi hydrométrique

Le Tableau 10 et la Figure 29 présentent la situation des stations installées et celles opérationnelles sur le BVK. Au total, environ nonante stations hydrométriques (avec jaugeages) et limnimétriques avaient été installées depuis l'époque coloniale, dont seules trois sont reportées opérationnelles. Les caractéristiques de ce réseau sont présentées dans le rapport de l'Etat des Lieux du suivi hydrométéorologique.

Tableau 10. Nombre des stations hydrométriques installées et opérationnelles sur le BVK

No	Rivière	Nombre des sta	ations	Chroniques disponibles
		Installées	Opérationnelles	
1	Kasaï	43	3	1922 -2014
2	Kwilu	5	0	-
3	Kwango	13	0	-
4	Lulua	10	0	-
5	Sankuru	4	0	-
6	Fimi	3	0	-
7	Lubefu	2	0	-
8	Lubilash	2	0	-
9	Bushimaie	2	0	-
10	Miao	2	0	-
11	Lukenie	4	0	-
	Total	90	3	

Figure 29. Distribution spatiale des stations limnimétriques installées sur le BVK.

Notons qu'à travers certaines initiatives de recherche et développement, il y a eu la réhabilitation ou l'installation de nouvelles stations sur la rivière Kasaï. Ces initiatives sont entre autres, le Projet d'Amélioration de Navigation (PANAV), le Projet de Recherche sur l'Hydraulique et la Morphologie pour les Usagers du Fleuve Congo (CRuHM), et le projet de la Coopération Technique Belge. Actuellement, la RVF est en charge de la gestion de ces stations. Le Centre de Recherche en Ressources en Eau du Bassin du Congo (CRREBaC), récemment crée s'occupe de la gestion d'une station automatique complète installée au niveau de Kutu-Muke. Le Tableau 7 présente les caractéristiques du réseau récemment mis en place de l'initiative CTB.

Tableau 11. Répertoire des stations hydrologiques de la CTB (source : RVF)

	Cours d'eau	Localité		onnées phiques	Altitudes du zéro	Période d'observation
N°			Longitude	Latitude	de l'échelle	a observation
1	Rivière Lukula	Masi-Manimba				Mai 2018 à Présent
2	Rivière Wamba	Kenge				Mai 2018 à Présent
3	Rivière Wamba	Mukila				Mai 2018 à Présent
4	Rivière Bakali	Kobo				Mai 2018 à Présent
5	Rivière Bakali	Bakali				Mai 2018 à Présent
6	Rivière Kwenge	Bumba SIEFAC				Juin 2018 à Présent
7	Rivière Kwenge	KIMBELUNGU SIEFAC				Juin 2018 à Présent

5.2 Statistiques des variables des propriétés physiques

La Figure 18 ci-haut présente 91 sous unités spatiales qui ont été obtenues en découpant le bassin versant sur la base du gradient d'élévation et de pente ainsi que des principaux cours d'eau, des sites de jaugeage existants, et des occupations de terres (zones minières, zones agricoles, agglomérations urbaines, lacs naturels). Le Tableau 12 ci-après présente les variables des caractéristiques physiques pour chaque unité des sous bassins. Ces attributs physiques du bassin versant ont été donc évalués afin d'identifier les relations entre les différentes caractéristiques du bassin. Il est important d'évaluer les corrélations entre les variables, ce qui permettra de déterminer les types de variabilité entre les caractéristiques du bassin et d'identifier les variables fortement corrélées afin d'en réduire le nombre pour les analyses ultérieures. Le coefficient de corrélation de Pearson a été utilisé pour effectuer l'analyse de corrélation qui illustre à la fois les variables corrélées et non corrélées. Les Tableaux 13 et 14 présentent les résultats de corrélation pour les variables corrélées avec une valeur p de 0,05. Toutefois, il est peu probable que les variables fortement corrélées contiennent des informations supplémentaires et elles pourraient être rejetées pour éviter des informations redondantes (Wagener et al., 2004). Les variables ayant un coefficient de corrélation égal ou supérieur à 0,7 ont été considérées comme fortement corrélées et n'ont donc pas été retenues pour une analyse plus poussée de la similarité des bassins versants. Wagener et al. (2004) suggèrent de faire preuve de prudence dans l'analyse des corrélations et la réduction subséquente des variables. Bien que certaines variables des propriétés physiques du bassin aient été corrélées au seuil d'un coefficient de corrélation de 0,7, celles liées à la catégorie d'élévation, à la pente, aux classes de texture du sous-sol et de couverture de terre ont été conservées pour analyse ultérieure.

Tableau 12. Statistiques des variables des propriétés physiques

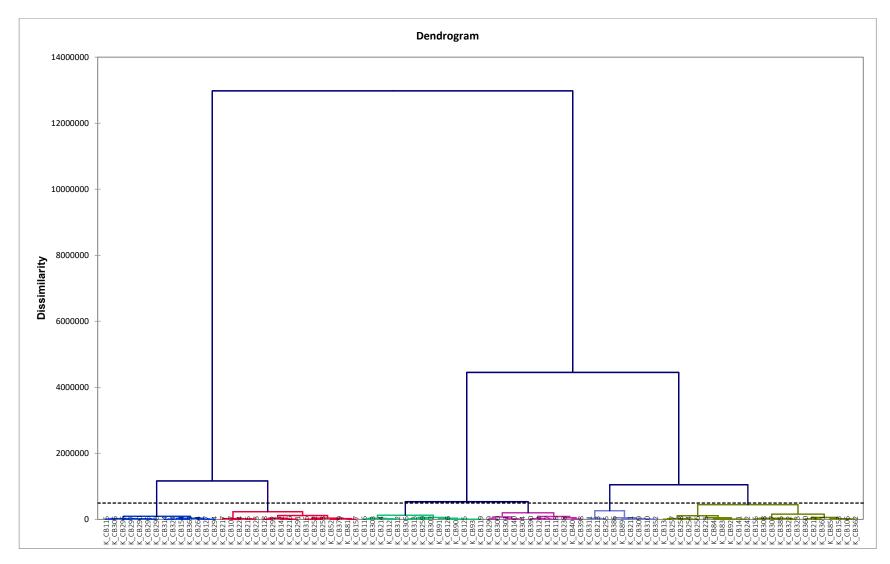
Variable	Observations	Minimum	Maximum	Moyenne	Ecart-type
Pente Moy [%]	91	1.218	13.712	6.129	3.264
TWI Moy	91	8.037	12.258	9.271	0.809
Limon Moy_45cm [%]	91	6.353	17.933	11.867	3.058
Argile Moy_45cm	91	18.014	44.984	27.888	6.401
Sable Moy_45cm [%]	91	37.083	75.599	60.245	9.162
Recharge Eau Souterraine [mm]	91	99.346	481.879	228.990	85.690
Pluie Moy Annuelle [mm]	91	1205.760	1737.107	1464.305	138.660
ETP [mm]	91	1273.420	1577.930	1404.518	72.218
Elévation MIN [m]	91	262.465	1111.420	569.342	246.897
Elévation MAX [m]	91	444.388	1542.892	1026.930	263.671
Elévation RANGE [m]	91	88.936	804.587	457.588	156.898
Elévation Moy [m]	91	314.491	1280.038	790.977	262.679
Intégral Hypsométrique	91	0.207	0.737	0.479	0.132
LCLU1	91	10.285	97.703	52.086	20.805
LCLU2	91	0.008	25.641	6.394	5.819
LCLU3	91	1.176	86.316	38.015	19.809
LCLU4	91	0.034	19.917	2.845	3.920
LCLU5	91	0.000	0.591	0.053	0.096
LCLU6	91	0.000	0.298	0.023	0.047
LCLU7	91	0.000	1.190	0.128	0.173
LCLU8	91	0.000	0.804	0.081	0.115
LCLU10	91	0.000	6.152	0.352	0.849
LCLU200	91	0.000	1.195	0.025	0.139

Tableau 13. Matrice de proximité des unités des sous bassins versants (un échantillon de 25 sur 91 unités de sous bassins versants est ici présenté).

	K_CB12	K_CB13	K_CB40	K_CB52	K_CB81	K_CB83	K_CB84	K_CB85	K_CB89	K_CB90	K_CB91	K_CB92	K_CB93	K_CB106	K_CB107	K_CB115	K_CB116	K_CB117	K_CB118	K_CB119	K_CB124
K_CB12	0.0	601.5	457.3	714.9	621.9	609.7	656.4	746.6	968.6	249.9	373.6	599.6	278.8	769.2	931.2	327.7	188.5	354.7	407.0	225.7	304.0
K_CB13	601.5	0.0	266.6	1011.8	897.9	212.2	208.9	214.9	462.4	514.2	352.1	163.7	525.9	221.2	1159.7	700.0	620.0	290.3	235.5	472.6	357.2
K_CB40	457.3	266.6	0.0	1017.5	896.5	361.9	408.3	440.0	519.2	484.7	389.1	343.6	512.6	448.1	1198.2	658.3	540.2	221.7	196.4	430.8	289.8
K_CB52	714.9	1011.8	1017.5	0.0	157.3	911.0	927.5	1020.5	1458.9	581.7	692.6	916.9	567.2	1089.9	226.5	419.7	574.3	852.8	886.0	629.4	787.7
K_CB81	621.9	897.9	896.5	157.3	0.0	798.1	820.7	905.4	1337.7	494.0	594.1	805.5	479.2	987.2	334.1	343.9	478.7	733.0	764.4	531.3	669.3
K_CB83	609.7	212.2	361.9	911.0	798.1	0.0	91.4	200.6	585.3	488.4	311.1	68.1	496.3	274.1	1048.0	627.0	585.0	304.2	267.9	452.5	347.3
K_CB84	656.4	208.9	408.3	927.5	820.7	91.4	0.0	154.2	583.0	515.9	326.2	74.5	517.1	205.8	1054.6	664.2	631.4	363.7	323.3	484.1	407.3
K_CB85	746.6	214.9	440.0	1020.5	905.4	200.6	154.2	0.0	509.8	620.8	434.9	180.3	619.2	179.4	1137.2	774.3	729.7	433.8	379.2	582.0	487.6
K_CB89	968.6	462.4	519.2	1458.9	1337.7	585.3	583.0	509.8	0.0	950.3	793.8	567.4	965.9	464.4	1605.7	1133.6	1032.3	669.5	616.1	899.1	749.0
K_CB90	249.9	514.2	484.7	581.7	494.0	488.4	515.9	620.8	950.3	0.0	208.9	474.1	99.3	649.8	774.7	221.9	184.0	331.8	371.5	99.3	275.8
K_CB91	373.6	352.1	389.1	692.6	594.1	311.1	326.2	434.9	793.8	208.9	0.0	292.0	200.7	457.5	861.9	375.8	342.0	253.8	263.3	171.8	242.3
K_CB92	599.6	163.7	343.6	916.9	805.5	68.1	74.5	180.3	567.4	474.1	292.0	0.0	481.5	232.3	1055.4	630.2	583.5	298.2	257.4	439.4	345.3
K_CB93	278.8	525.9	512.6	567.2	479.2	496.3	517.1	619.2	965.9	99.3	200.7	481.5	0.0	647.5	758.6	226.0	199.2	350.6	386.3	97.6	298.4
K_CB106	769.2	221.2	448.1	1089.9	987.2	274.1	205.8	179.4	464.4	649.8	457.5	232.3	647.5	0.0	1214.3	825.7	778.6	482.8	431.5	614.1	543.2
K_CB107	931.2	1159.7	1198.2	226.5	334.1	1048.0	1054.6	1137.2	1605.7	774.7	861.9	1055.4	758.6	1214.3	0.0	630.2	784.1	1032.7	1059.1	823.9	971.9
K_CB115	327.7	700.0	658.3	419.7	343.9	627.0	664.2	774.3	1133.6	221.9	375.8	630.2	226.0	825.7	630.2	0.0	174.9	484.1	531.4	260.3	411.9
K_CB116	188.5	620.0	540.2	574.3	478.7	585.0	631.4	729.7	1032.3	184.0	342.0	583.5	199.2	778.6	784.1	174.9	0.0	368.5	423.2	184.9	293.6
K_CB117	354.7	290.3	221.7	852.8	733.0	304.2	363.7	433.8	669.5	331.8	253.8	298.2	350.6	482.8	1032.7	484.1	368.5	0.0	64.9	272.4	81.2
K_CB118	407.0	235.5	196.4	886.0	764.4	267.9	323.3	379.2	616.1	371.5	263.3	257.4	386.3	431.5	1059.1	531.4	423.2	64.9	0.0	310.7	140.2
K_CB119	225.7	472.6	430.8	629.4	531.3	452.5	484.1	582.0	899.1	99.3	171.8	439.4	97.6	614.1	823.9	260.3	184.9	272.4	310.7	0.0	221.8
K_CB124	304.0	357.2	289.8	787.7	669.3	347.3	407.3	487.6	749.0	275.8	242.3	345.3	298.4	543.2	971.9	411.9	293.6	81.2	140.2	221.8	0.0

Tableau 14. Matrice de proximité des variables physiques

		P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	P11	P12	P13	P14	P15	P16	P17	P18	P19	P20	P21	P22	P23
P1	Pente Moy [%]	1	-0.910	0.236	0.151	-0.185	0.167	0.275	-0.373	-0.511	-0.145	0.561	-0.350	-0.118	0.108	-0.225	-0.047	0.014	-0.138	0.148	0.165	0.004	-0.076	-0.119
P2	TWI Moy	-0.910	1	-0.284	-0.246	0.267	-0.083	-0.222	0.343	0.390	0.075	-0.488	0.261	0.104	-0.156	0.244	0.113	-0.137	0.170	-0.083	-0.004	-0.032	0.126	0.098
Р3	Limon Moy_45cm [%]	0.236	-0.284	1	0.859	-0.934	0.484	0.669	-0.512	-0.617	-0.704	-0.213	-0.749	-0.509	0.056	-0.134	-0.099	0.337	0.244	0.138	0.154	0.180	0.172	0.196
P4	Argile Moy_45cm	0.151	-0.246	0.859	1	-0.985	0.446	0.581	-0.427	-0.408	-0.581	-0.335	-0.566	-0.389	0.077	-0.068	-0.159	0.447	0.205	0.140	0.053	0.133	0.146	0.099
P5	Sable Moy_45cm [%]	-0.185	0.267	-0.934	-0.985	1	-0.473	-0.629	0.469	0.491	0.641	0.305	0.645	0.442	-0.073	0.092	0.144	-0.425	-0.225	-0.143	-0.088	-0.153	-0.159	-0.135
P6	Recharge Eau Souterraine. [mm]	0.167	-0.083	0.484	0.446	-0.473	1	0.788	-0.762	-0.646	-0.767	-0.272	-0.738	-0.419	0.096	-0.043	-0.139	0.177	0.202	0.026	0.230	0.030	0.257	0.188
P7	Pluie Moy Annuelle [mm]	0.275	-0.222	0.669	0.581	-0.629	0.788	1	-0.770	-0.800	-0.919	-0.286	-0.857	-0.275	-0.109	-0.038	0.066	0.220	0.242	0.124	0.344	0.202	0.198	0.201
P8	ETP [mm]	-0.373	0.343	-0.512	-0.427	0.469	-0.762	-0.770	1	0.635	0.678	0.140	0.666	0.300	-0.135	0.086	0.153	-0.142	-0.111	0.029	-0.175	-0.070	-0.099	-0.144
Р9	Elévation MIN [m]	-0.511	0.390	-0.617	-0.408	0.491	-0.646	-0.800	0.635	1	0.813	-0.207	0.922	0.364	0.151	0.131	-0.148	-0.182	-0.115	-0.154	-0.329	-0.151	-0.178	-0.139
P10	Elévation MAX [m]	-0.145	0.075	-0.704	-0.581	0.641	-0.767	-0.919	0.678	0.813	1	0.401	0.935	0.417	0.121	-0.019	-0.062	-0.212	-0.259	-0.122	-0.333	-0.161	-0.254	-0.250
P11	Elévation RANGE [m]	0.561	-0.488	-0.213	-0.335	0.305	-0.272	-0.286	0.140	-0.207	0.401	1	0.120	0.129	-0.034	-0.238	0.129	-0.071	-0.254	0.037	-0.043	-0.034	-0.147	-0.201
P12	Elévation Moy [m]	-0.350	0.261	-0.749	-0.566	0.645	-0.738	-0.857	0.666	0.922	0.935	0.120	1	0.588	0.086	0.063	-0.050	-0.206	-0.208	-0.199	-0.359	-0.155	-0.265	-0.221
P13	Intégral Hypsométrique	-0.118	0.104	-0.509	-0.389	0.442	-0.419	-0.275	0.300	0.364	0.417	0.129	0.588	1	-0.185	0.062	0.208	-0.063	-0.204	-0.276	-0.223	-0.060	-0.321	-0.225
P14	LCLU1	0.108	-0.156	0.056	0.077	-0.073	0.096	-0.109	-0.135	0.151	0.121	-0.034	0.086	-0.185	1	-0.389	-0.952	0.078	0.203	-0.258	-0.323	-0.310	0.086	0.285
P15	LCLU2	-0.225	0.244	-0.134	-0.068	0.092	-0.043	-0.038	0.086	0.131	-0.019	-0.238	0.063	0.062	-0.389	1	0.160	-0.202	-0.157	0.006	0.179	0.038	-0.120	-0.138
P16	LCLU3	-0.047	0.113	-0.099	-0.159	0.144	-0.139	0.066	0.153	-0.148	-0.062	0.129	-0.050	0.208	-0.952	0.160	1	-0.222	-0.227	0.275	0.311	0.224	-0.108	-0.288
P17	LCLU4	0.014	-0.137	0.337	0.447	-0.425	0.177	0.220	-0.142	-0.182	-0.212	-0.071	-0.206	-0.063	0.078	-0.202	-0.222	1	0.117	-0.106	-0.216	0.377	0.016	0.023
P18	LCLU5	-0.138	0.170	0.244	0.205	-0.225	0.202	0.242	-0.111	-0.115	-0.259	-0.254	-0.208	-0.204	0.203	-0.157	-0.227	0.117	1	0.171	0.208	0.161	0.578	0.594
P19	LCLU6	0.148	-0.083	0.138	0.140	-0.143	0.026	0.124	0.029	-0.154	-0.122	0.037	-0.199	-0.276	-0.258	0.006	0.275	-0.106	0.171	1	0.728	0.147	0.099	-0.045
P20	LCLU7	0.165	-0.004	0.154	0.053	-0.088	0.230	0.344	-0.175	-0.329	-0.333	-0.043	-0.359	-0.223	-0.323	0.179	0.311	-0.216	0.208	0.728	1	0.171	0.137	-0.092
P21	LCLU8	0.004	-0.032	0.180	0.133	-0.153	0.030	0.202	-0.070	-0.151	-0.161	-0.034	-0.155	-0.060	-0.310	0.038	0.224	0.377	0.161	0.147	0.171	1	0.172	-0.004
P22	LCLU10	-0.076	0.126	0.172	0.146	-0.159	0.257	0.198	-0.099	-0.178	-0.254	-0.147	-0.265	-0.321	0.086	-0.120	-0.108	0.016	0.578	0.099	0.137	0.172	1	0.359
P23	LCLU200	-0.119	0.098	0.196	0.099	-0.135	0.188	0.201	-0.144	-0.139	-0.250	-0.201	-0.221	-0.225	0.285	-0.138	-0.288	0.023	0.594	-0.045	-0.092	-0.004	0.359	1


5.3 Méthode de régionalisation: Classification Hiérarchique par Agglomération

L'évaluation de similarité est une étape importante qui consiste à établir une cartographie significative des caractéristiques physiques ou hydrologiques d'un bassin versant, telles que la forme, structure et fonctions d'un bassin versant qui sous-tendent les relations causales et permettent une capacité prédictive (Wagener et al., 2007; Oudin et al., 2010). Les descripteurs du paysage (signatures) sont importants parce qu'ils fournissent des informations sur les différences et les similitudes entre les différentes unités du paysage (bassins versants), ainsi que les explications des causes. Les descripteurs sont des caractéristiques spécifiques qui peuvent être utilisées pour expliquer le comportement du fonctionnement du bassin versant. Ils décrivent les caractéristiques pertinentes de la réponse du bassin versant (Yadav et al., 2007). Wagener et al (2008) différencient les descripteurs du climat, de la forme et des fonctions du bassin versant qui peuvent être utilisés pour définir les similitudes entre bassins versants. Blöschl (2005) identifie trois types de mesures de similarité qui englobent la proximité spatiale, des attributs de bassin versant similaires et des indices de similarité. Olden et al. (2011) décrivent les approches déductive et inductive de la similarité des bassins versants. La différence entre les deux approches réside dans le fait que la première (approche déductive) utilise les caractéristiques hydrologiques pertinentes du bassin (ex. climat, topographie, végétation, sols et géologie) qui sont censées contrôler les processus hydrologiques, afin de définir la simple classification des régions contiguës ou non contiguës qui sont considérées homogènes, en ce qui concerne certaines caractéristiques environnementales. Cette approche est utile lorsqu'une description générale des tendances hydrologiques perçues, fondée sur les principes primaires, est nécessaire pour faciliter ou faire progresser la compréhension. Cette approche offre une solution alternative lorsque les données d'écoulement observées ou les données hydrologiques modélisées ne sont pas disponibles. Toutefois, l'absence de données fiables sur les propriétés physiques des bassins, en particulier sur les formations souterraines, constitue un obstacle majeur à l'utilisation de l'approche déductive. L'approche inductive utilise les signatures du régime d'écoulement du cours d'eau (Magnitude, fréquence, durée, temps, et taux de changement) pour établir des groupes hydrologiquement similaires. L'approche inductive est la plus fiable pour la classification des bassins versants, bien que la qualité des données de débits observés (valeurs manquantes et enregistrements insatisfaisants dus à de mauvaises mesures, ainsi qu'à des inadéquations temporelles entre différents sites de mesure) pose un problème. Cette partie de l'étude tente d'utiliser les estimations (descripteurs) dérivées des attributs physiques du bassin pour définir les régions ayant des caractéristiques physiographiques et hydrologiques similaires dans le bassin. Dans ce cas, la "tentative" implique qu'il n'existe pas une manière unique et définie d'utiliser l'analyse de similarité.

Plusieurs approches sont explorées, y compris une combinaison d'analyses SIG et multi variées. L'analyse en grappes est de loin l'approche la plus largement utilisée, selon laquelle les objets sont divisés en groupes ou en grappes de manière à ce que les objets au sein des

groupes soient aussi semblables que possible et que ceux de différents groupes soient aussi différents que possible. Gordon (1987) donne un aperçu des méthodes et des algorithmes basés sur l'utilisation de la classification hiérarchique. La classification hiérarchique est une méthode de classification non supervisée qui consiste en un processus itératif consistant à combiner des grappes plus petites en grappes plus grandes (agglomérantes) ou à diviser des grappes plus grandes (division) pour produire une classification d'objets généralement présentés sous forme de dendogramme de grappes. Rao et Srinivas (2006) donnent une liste de plusieurs algorithmes représentatifs pour la classification hiérarchique par agglomération. Ces algorithmes diffèrent par la manière dont ils calculent la similarité entre une paire de grappes et il semble n'y avoir aucune règle pour la sélection d'un algorithme particulier. En hydrologie, la distance euclidienne semble être la méthode la plus fréquemment utilisée. Elle a été appliquée en combinaison avec différents algorithmes de couplage, tels que la distance moyenne non pondérée du groupe (par exemple, Ley et al., 2011), des couplages simples et complets (par exemple, Tasker, 1982; Rao et Srinivas, 2006), groupe centroïde (par exemple Pegg et Pierc, 2002), algorithme de Ward (par exemple, Hosking et Wallis, 1997; Mazimavi, 2003; Rao et Srinivas, 2006). Dans la présente étude, la distance euclidienne est utilisée, sur la base de l'algorithme de Ward approprié pour les applications impliquant la régionalisation afin de garantir une taille d'échantillon adéquate pour établir des relations statistiques (Olden et al., 2011).

La Figure 30 présente le dendrogramme de la classification hiérarchisée, le Tableau 15 montre la représentation des groupes des sous-bassins homogènes, basée sur les attributs physiques du bassin identifiés à partir de la classification hiérarchique par agglomération. Au total, Six Groupes Homogènes ont été identifiés à partir de la classification hiérarchisée.

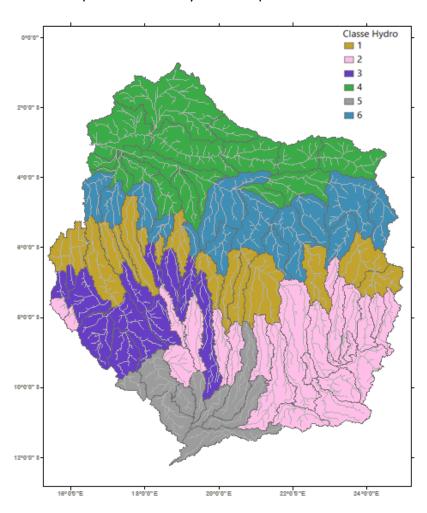

Figure 30. Dendrogramme de la classification hiérarchisée pour 91 sous bassins

Tableau 15. Les groupes des sous-bassins homogènes déduits de la classification hiérarchique par agglomération

Classe	1	2	3	4	5	6
Objets	15	24	12	17	9	14
Somme des poids	15	24	12	17	9	14
Variance intra-classe	22942.457	44270.613	43078.841	32381.291	49558.013	16511.884
Distance minimale au barycentre	80.123	90.065	122.687	69.442	54.799	94.879
Distance moyenne au barycentre	137.995	196.778	194.384	166.346	189.789	122.056
Distance maximale au barycentre	233.370	365.125	276.790	254.708	320.371	162.082
	K_CB12	K_CB13	K_CB40	K_CB52	K_CB89	K_CB115
	K_CB90	K_CB83	K_CB117	K_CB81	K_CB211	K_CB127
	K_CB91	K_CB84	K_CB118	K_CB107	K_CB213	K_CB154
	K_CB93	K_CB85	K_CB124	K_CB128	K_CB255	K_CB264
	K_CB116	K_CB92	K_CB140	K_CB142	K_CB309	K_CB290
	K_CB119	K_CB106	K_CB238	K_CB157	K_CB310	K_CB294
	K_CB125	K_CB141	K_CB299	K_CB215	K_CB311	K_CB295
	K_CB126	K_CB153	K_CB300	K_CB216	K_CB352	K_CB296
	K_CB214	K_CB155	K_CB301	K_CB217	K_CB386	K_CB297
	K_CB259	K_CB212	K_CB304	K_CB223		K_CB298
	K_CB302	K_CB225	K_CB390	K_CB224		K_CB306
	K_CB303	K_CB242	K_CB398	K_CB252		K_CB314
	K_CB305	K_CB254		K_CB253		K_CB324
	K_CB312	K_CB256		K_CB291		K_CB363
	K_CB313	K_CB257		K_CB292		
		K_CB258		K_CB315		
		K_CB307		K_CB379		
		K_CB308				
		K_CB322				
		K_CB323				
		K_CB360				
		K_CB361				
		K_CB362				
		K_CB385				

5.4 Réseau optimal de suivi hydrométrique

La Figure 31 présente la distribution spatiale des unités des sous bassins, qui reflètent les grands groupes homogènes des caractéristiques physiques du bassin versant de Kasaï. Comme évoqué plus haut, la deuxième hypothèse émise dans cette étude stipule que les attributs physiques du bassin tels que le climat, la topographie, la végétation, les types de sol et la géologie exercent un contrôle important sur la réponse hydrologique du bassin. Ainsi, des zones présentant des caractéristiques physiographiques similaires peuvent conduire à des réponses hydrologiques similaires, bien que cela ne soit toujours pas possible dans tous les cas (Burn et al., 1997). Sur la base de cette hypothèse, les six groupes homogènes des caractéristiques physiques ont été utilisés pour optimiser le réseau de suivi hydrométrique du bassin versant du Kasaï (Figure 32). Cette Figure 32 présente le réseau incluant les anciennes et nouvelles stations. Les Tableaux 16, 17, 18 reprennent les caractéristiques spatiales et géométriques du réseau optimal de suivi hydrométrique sur le BVK.

Figure 31. Distribution spatiale des six unités des sous bassins déduits de la classification hiérarchique par agglomération

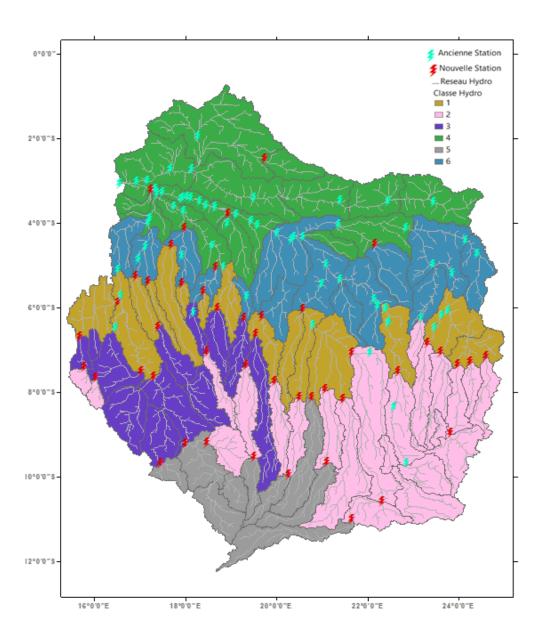


Figure 32. Réseau Optimal de suivi hydrométrique pour le BVK

Tableau 16. Caractéristiques spatiales et géométriques des anciennes stations de suivi hydrométrique sur le BVK

No	ID Station	Cours d'Eau	Pays	Long	Lat	Elevation [m]	Superficie [km²]
1	Lediba	Kasai	RDC	16.557	-3.057	281.517	891049
2	Mushie	Kasai	RDC	16.933	-3.026	285.323	889513
3	Kutu-Moke	Kasai	RDC	17.346	-3.197	304.417	748633
4	Dima	Kasai	RDC	17.488	-3.272	298.099	
5	Bene	Kasai	RDC	17.913	-3.417	319.071	
6	Esaka-Amont	Kasai	RDC	17.942	-3.400	309.645	475554
7	Seko	Kasai	RDC	18.050	-3.372	317.254	
8	Kese	Kasai	RDC	18.113	-3.403	320.321	
9	Makaw	Kasai	RDC	18.319	-3.486	334.127	
10	Kinzia	Kasai	RDC	18.443	-3.586	310.507	
11	Mabenga	Kasai	RDC	18.649	-3.614	312.170	
12	Panu	Kasai	RDC	19.119	-3.793	328.341	
13	Yuki	Kasai	RDC	19.446	-3.947	385.900	
14	Mangai-Lhoest	Kasai	RDC	19.593	-4.053	331.748	
15	Pombe	Kasai	RDC	20.015	-4.251	355.784	
16	Brabanta	Kasai	RDC	20.317	-4.388	364.133	
17	Basongo	Kasai	RDC	20.375	-4.325	408.713	
18	Port-Francqui	Kasai	RDC	20.582	-4.333	428.658	241673
19	Bena Makima	Haut-Kasai	RDC	21.086	-4.979	381.746	
20	Charlesville	Haut-Kasai	RDC	20.982	-5.449	429.425	
21	Tshikapa	Haut-Kasai	RDC	20.793	-6.407	435.021	
22	Kimbali	Fimi	RDC	17.163	-2.996	289.562	
23	Nioki	Fimi	RDC	17.676	-2.717	308.948	
24	Kutu	Fimi	RDC	18.142	-2.728	301.980	118180
25	Inongo	Lac Leopold II	RDC	18.268	-1.950	295.102	
26	Oshwe	Lukenie	RDC	19.507	-3.396	316.112	
27	Dekese	Lukenie	RDC	21.389	-3.457	365.029	
28	Kole	Lukenie	RDC	22.449	-3.479	381.597	
29	Lodja	Lukenie	RDC	23.442	-3.500	430.235	
30	Banningville	Kwango	RDC	17.371	-3.299	300.794	270769
31	Fambono	Kwango	RDC	17.232	-3.874	313.422	
32	Kingushi-Amont	Kwango	RDC	16.512	-5.103	366.124	127763
33	Popokabaka	Kwango	RDC	16.571	-5.704	393.694	
34	Kasongo Lunda	Kwango	RDC	16.465	-6.478	764.219	
35	Fayala	Wamba	RDC	17.192	-3.988	336.128	
36	Gabia	Wamba	RDC	17.118	-4.565	351.815	
37	Kenge	Wamba	RDC	16.978	-4.857	405.468	
38	Beno	Kwilu	RDC	17.758	-3.617	322.888	
39	Bagata	Kwilu	RDC	17.957	-3.719	324.459	
40	Bulungu	Kwilu	RDC	18.587	-4.539	341.278	
41	Kikwit	Kwilu	RDC	18.837	-5.031	376.883	
42	Gungu	Kwilu	RDC	19.348	-5.728	609.868	

43	Masi-Manimba	Lukula	RDC	17.917	-4.765	380.452	
44	Feshi	Kwenge	RDC	18.169	-6.119	835.505	
45	Ivang	Kamtsha	RDC	18.926	-4.008	410.509	
46	Lodi	Sankuru	RDC	21.350	-4.024	370.734	145117
47	Bena Dibele	Sankuru	RDC	22.843	-4.110	402.393	
48	Lusambo	Sankuru	RDC	23.421	-4.967	422.398	
49	Pania Mutombo	Sankuru	RDC	23.850	-5.194	432.856	
50	Samangwa	Lubefu	RDC	24.154	-4.406	474.874	
51	Lubefu	Lubefu	RDC	24.406	-4.722	599.026	
52	Tubi-Tubidi	Lubi	RDC	23.165	-6.246	694.975	3527
53	Tshala	Lubilash	RDC	23.765	-6.081	503.607	
54	Bakwanga	Bushimaie	RDC	23.628	-6.179	526.144	
55	Mulungwi	Bushimaie	RDC	23.458	-6.476	604.032	
56	Luebo	Lulua	RDC	21.406	-5.336	393.300	
57	Luluabourg	Lulua	RDC	22.129	-5.808	583.945	46552
58	Bombo-Aval	Lulua	RDC	22.392	-6.001	549.105	
59	Bombo-Amont	Lulua	RDC	22.391	-6.000	548.553	
60	Katende-Aval I I	Lulua	RDC	22.451	-6.343	636.553	
61	Katende-Aval I	Lulua	RDC	22.451	-6.343	635.897	
62	Katende-Amont	Lulua	RDC	22.451	-6.345	639.064	
63	Kapanga	Lulua	RDC	22.568	-8.345	866.584	
64	Sandoa	Lulua	RDC	22.847	-9.671	909.202	
65	Malandji-Aval	Miao	RDC	22.222	-5.936	537.812	
66	Malandji-Amont	Miao	RDC	22.221	-5.939	526.764	
67	Tshibala	Lueta	RDC	22.032	-7.064	722.360	

Tableau 17. Caractéristiques spatiales et géométriques des nouvelles stations de suivi hydrométrique sur le BVK identifiées sur la base de la CHA [Priorité : observation synoptique]

1 Lubisi Angola 16.5227 -5.852 400.47 20071 2 Carumbo Angola 19.9433 -7.738 745.59 7882 3 Anfluent Uemla Angola 15.6740 -6.674 669.68 5574 4 Luilu Angola 23.6054 -7.048 766.46 10857 5 Lubishi RDC 24.2411 -7.277 795.92 4303 6 Lumbi Angola 24.5972 -7.139 860.71 6720 7 Chicapa Angola 20.2746 -9.949 998.06 5205 8 Lubilansh RDC 18.8622 -5.033 359.31 15311 10 Kwilu RDC 18.8698 -6.01 584.90 7551 11 Lulakima RDC 19.8366 -6.247 623.03 21880 13 Lushiko RDC 19.8866 -6.206 484.85 30017 14 Kasai RDC 19.3331 -7.636 504.05 76339 15 Tunglla RDC 19	No	Cours d'Eau	Pays	Long	Lat	Elevation [m]	Superficie [km2]
3 Anfluent Uemla Angola 15.6740	1	Lubisi	Angola	16.5227	-5.852	400.47	20071
4 Luilu Angola 23.6054 -7.048 766.46 10857 5 Lubishi RDC 24.2411 -7.277 795.92 4303 6 Lumbi Angola 24.5972 -7.139 860.71 6720 7 Chicapa Angola 20.2746 -9.949 998.06 5205 8 Lubilansh RDC 23.9720 -7.327 757.21 18064 9 Kwango RDC 18.6622 -5.033 35931 15311 10 Kwilu RDC 18.6968 -6.01 584.90 7551 12 Kwilu RDC 18.6968 -6.01 584.90 7551 12 Kwilu RDC 19.2836 -6.247 623.03 21680 13 Lushiko RDC 19.6866 -6.026 484.85 30017 14 Kasai RDC 20.5805 -6.027 427.23 15564 15 Tungila RDC 17.3031 -7.636 504.05 76639 16 Lula RDC 22.6088	2	Carumbo	Angola	19.9433	-7.738	745.59	7882
5 Lubishi RDC 24.2411 -7.277 795.92 4303 6 Lumbi Angola 24.5972 -7.139 860.71 6720 7 Chicapa Angola 22.5720 -7.327 757.21 18064 9 Kwango RDC 18.6622 -5.033 359.31 15311 10 Kwilu RDC 18.6968 -6.01 584.90 7551 12 Kwilu RDC 18.8968 -6.01 584.90 7551 12 Kwilu RDC 19.836 -6.247 623.03 21680 13 Lushiko RDC 19.8666 -6.006 484.85 30017 14 Kasai RDC 20.5805 -6.027 427.23 155564 15 Tungila RDC 17.3031 -7.636 504.05 76639 16 Lulua RDC 22.3668 -7.513 783.7 34247 17 Lokoro RDC <td>3</td> <td>Anfluent Uemla</td> <td>Angola</td> <td>15.6740</td> <td>-6.674</td> <td>669.68</td> <td>5574</td>	3	Anfluent Uemla	Angola	15.6740	-6.674	669.68	5574
6 Lumbi Angola 24.5972 -7.139 860.71 6720 7 Chicapa Angola 20.2746 -9.949 998.06 5205 8 Lubilansh RDC 23.9720 -7.327 757.21 18064 9 Kwango RDC 18.6622 -5.033 359.31 15311 10 Kwilu RDC 18.8359 -5.032 349.27 40435 11 Lulakima RDC 18.8389 -5.032 349.27 40435 11 Lulakima RDC 18.6868 -6.01 584.90 7551 12 Kwilu RDC 19.2836 -6.247 623.03 21580 13 Lushiko RDC 19.2836 -6.207 427.23 155564 14 Kasai RDC 17.3031 -7.636 504.05 76639 16 Lulua RDC 22.6688 -7.513 783.37 34247 17 Lokoro RDC 19.7384 -2.463 315.73 7406 18 Kasai RDC 22.3102	4	Luilu	Angola	23.6054	-7.048	766.46	10857
7 Chicapa Angola 20.2746 -9.949 998.06 5205 8 Lubilansh RDC 23,9720 -7.327 757.21 18064 9 Kwango RDC 18.6622 -5.033 359.31 15311 10 Kwilu RDC 18.6968 -6.01 584.90 7551 12 Kwilu RDC 19.2836 -6.247 623.03 21680 12 Kwilu RDC 19.6866 -6.006 484.85 30017 14 Kasaï RDC 20.5805 -6.027 427.23 155564 15 Tungila RDC 17.3031 -7.636 504.05 76639 16 Lulua RDC 19.7384 -2.463 315.73 7406 18 Kasaï RDC 19.7384 -2.463 315.73 7406 19 Cassai Angola 21.6575 -11 1041.89 12745 20 Cuango Ang	5	Lubishi	RDC	24.2411	-7.277	795.92	4303
8 Lubilansh RDC 23.9720 -7.327 757.21 18064 9 Kwango RDC 18.6622 -5.033 359.31 15311 10 Kwilu RDC 18.8359 -5.032 349.27 40435 11 Lulakima RDC 18.6968 -6.01 584.90 7551 12 Kwilu RDC 19.2836 -6.247 623.03 21680 13 Lushiko RDC 19.6866 -6.206 484.85 30017 14 Kasaï RDC 20.5805 -6.027 427.23 155564 15 Tungila RDC 17.3031 -7.636 504.05 76639 16 Lulua RDC 22.6668 -7.513 783.37 34247 17 Lokoro RDC 19.7384 -2.463 315.73 7406 18 Kasaï RDC 21.7324 -2.463 315.73 7446 19 Cassai Angola 21.6575 -11 1041.89 12745 20 Cuango Angola 18.0123	6	Lumbi	Angola	24.5972	-7.139	860.71	6720
9 Kwango RDC 18.6622 -5.033 359.31 15311 10 Kwilu RDC 18.8359 -5.032 349.27 40435 11 Lulakima RDC 18.6968 -6.01 584.90 7551 12 Kwilu RDC 19.2836 -6.247 623.03 21680 13 Lushiko RDC 19.6866 -6.206 484.85 30017 14 Kasaï RDC 20.5805 -6.027 427.23 155564 15 Tungila RDC 17.3031 -7.636 504.05 76639 16 Lulua RDC 22.6688 -7.513 783.37 34247 17 Lokoro RDC 19.7384 -2.463 315.73 7406 18 Kasaï RDC 22.3102 -10.57 974.74 21469 20 Cuango Angola 21.6575 -11 1041.89 12745 20 Cuango Angola 18.0123 -9.202 819.85 33991 21 Kasaï RDC 17.9453	7		Angola	20.2746	-9.949	998.06	5205
10 Kwilu RDC 18.8359 -5.032 349.27 40435 11 Lulakima RDC 18.6968 -6.01 584.90 7551 12 Kwilu RDC 19.2836 -6.247 623.03 21680 13 Lushiko RDC 19.6866 -6.206 484.85 30017 14 Kasaï RDC 20.5805 -6.027 427.23 155564 15 Tungila RDC 17.3031 -7.636 504.05 76639 16 Lulua RDC 22.6688 -7.513 783.37 34247 17 Lokoro RDC 19.7384 -2.463 315.73 7406 18 Kasaï RDC 22.3102 -10.57 974.74 21469 19 Cassai Angola 21.6575 -11 1041.89 1274 20 Cuango Angola 21.6575 -11 1041.89 1272 21 Kasaï RDC 23.1643 -6.245 690.03 3420 21 Lubi RDC 23.3041 -	8	Lubilansh	RDC	23.9720	-7.327	757.21	
11 Lulakima RDC 18.6968 -6.01 584.90 7551 12 Kwilu RDC 19.2836 -6.247 623.03 21680 13 Lushiko RDC 19.6866 -6.206 484.85 3001 14 Kasaai RDC 20.5805 -6.027 427.23 155564 15 Tungila RDC 17.3031 -7.636 504.05 76639 16 Lulua RDC 22.6688 -7.513 783.37 34247 17 Lokoro RDC 19.7384 -2.463 315.73 7406 18 Kasaai RDC 19.7384 -2.463 315.73 7406 19 Cassai Angola 21.6575 -11 1041.89 12745 20 Cuango Angola 18.0123 -9.202 819.85 33991 21 Kasai RDC 17.9453 -3.402 304.92 472206 22 Lubi <td< td=""><td>9</td><td>Kwango</td><td>RDC</td><td>18.6622</td><td>-5.033</td><td>359.31</td><td>15311</td></td<>	9	Kwango	RDC	18.6622	-5.033	359.31	15311
12 Kwillu RDC 19.2836 -6.247 623.03 21680 13 Lushiko RDC 19.6866 -6.206 484.85 30017 14 Kasai RDC 20.5805 -6.027 427.23 15560 15 Tungila RDC 20.5805 -6.027 427.23 15566 15 Tungila RDC 20.5805 -6.027 427.23 15566 15 Tungila RDC 20.5805 -6.027 427.23 15566 15 Tungila RDC 20.6888 -7.513 783.37 34247 17 Lokoro RDC 19.7384 -2.463 315.73 7406 18 Kasai RDC 22.16575 -11 1041.89 12745 20 Cuango Angola 21.6575 -11 1041.89 12745 20 Cuango Angola 21.6575 -11 1041.89 12745 21 Lubi <t< td=""><td>10</td><td>Kwilu</td><td>RDC</td><td>18.8359</td><td>-5.032</td><td>349.27</td><td>40435</td></t<>	10	Kwilu	RDC	18.8359	-5.032	349.27	40435
13 Lushiko RDC 19.6866 -6.206 484.85 30017 14 Kasaï RDC 20.5805 -6.027 427.23 155564 15 Tungila RDC 17.3031 -7.636 504.05 76639 16 Lulua RDC 19.7384 -2.463 315.73 7406 18 Kasaï RDC 19.7384 -2.463 315.73 7406 18 Kasaï RDC 22.3102 -10.57 974.74 21469 19 Cassai Angola 21.6575 -11 1041.89 12745 20 Cuango Angola 21.6575 -3.402 304.92 472206 21 Lubi	11	Lulakima	RDC	18.6968	-6.01	584.90	7551
14 Kasaï RDC 20.5805 -6.027 427.23 155564 15 Tungila RDC 17.3031 -7.636 504.05 76639 16 Lulua RDC 22.6688 -7.513 783.37 34247 17 Lokoro RDC 19.7384 -2.463 315.73 7406 18 Kasaï RDC 22.3102 -10.57 974.74 21469 19 Cassai Angola 21.6575 -11 1041.89 12745 20 Cuango Angola 18.0123 -9.202 819.85 33991 21 Kasaï RDC 17.9453 -3.402 304.92 472206 22 Lubi RDC 23.1643 -6.245 690.03 3420 22 Lubi RDC 23.3041 -6.833 797.59 10498 25 Kumtsha RDC 18.9293 -3.781 327.23 8718 26 Chicapa A	12	Kwilu	RDC	19.2836	-6.247	623.03	21680
15 Tungila RDC 17.3031 -7.636 504.05 76639 16 Lulua RDC 22.6688 -7.513 783.37 34247 17 Lokoro RDC 19.7384 -2.463 315.73 7406 18 Kasai RDC 22.3102 -10.57 974.74 21469 19 Cassai Angola 21.6575 -11 1041.89 12745 20 Cuango Angola 18.0123 -9.202 819.85 33991 21 Kasai RDC 17.9453 -3.402 304.92 472206 22 Lubi RDC 23.1643 -6.245 690.03 3420 23 Loange Angola 19.5415 -6.618 527.29 14616 24 Bushimai RDC 23.3041 -6.833 797.59 10498 25 Kumtsha RDC 18.9293 -3.781 327.23 8718 26 Chicapa	13	Lushiko	RDC	19.6866	-6.206	484.85	30017
16 Lulua RDC 22.6688 -7.513 783.37 34247 17 Lokoro RDC 19.7384 -2.463 315.73 7406 18 Kasai RDC 22.3102 -10.57 974.74 21469 19 Cassai Angola 21.6575 -11 1041.89 12745 20 Cuango Angola 18.0123 -9.202 819.85 33991 21 Kasai RDC 17.9453 -3.402 304.92 472206 22 Lubi RDC 23.1643 -6.245 690.03 3420 23 Loange Angola 19.5415 -6.618 527.29 14616 24 Bushimai RDC 23.3041 -6.833 797.59 10498 25 Kumtsha RDC 18.9293 -3.781 327.23 8718 26 Chicapa Angola 20.5085 -8.122 732.94 12255 27 Luachimo	14	Kasaï	RDC	20.5805	-6.027	427.23	155564
17 Lokoro RDC 19.7384 -2.463 315.73 7406 18 Kasaï RDC 22.3102 -10.57 974.74 21469 19 Cassai Angola 21.6575 -11 1041.89 12745 20 Cuango Angola 18.0123 -9.202 819.85 33991 21 Kasaï RDC 17.9453 -3.402 304.92 472206 22 Lubi RDC 23.1643 -6.245 690.03 3420 23 Loange Angola 19.5415 -6.618 527.29 14616 24 Bushimai RDC 23.3041 -6.833 797.59 10498 25 Kumtsha RDC 18.9293 -3.781 327.23 8718 26 Chicapa Angola 20.5085 -8.122 736.83 14285 27 Luachimo Angola 21.0729 -7.932 704.49 18603 28 Chiumbe <td>15</td> <td>Tungila</td> <td>RDC</td> <td>17.3031</td> <td>-7.636</td> <td>504.05</td> <td>76639</td>	15	Tungila	RDC	17.3031	-7.636	504.05	76639
18 Kasaï RDC 22.3102 -10.57 974.74 21469 19 Cassai Angola 21.6575 -11 1041.89 12745 20 Cuango Angola 18.0123 -9.202 819.85 33991 21 Kasaï RDC 17.9453 -3.402 304.92 472206 22 Lubi RDC 23.1643 -6.245 690.33 3420 23 Loange Angola 19.5415 -6.618 527.29 14616 24 Bushimai RDC 23.3041 -6.833 797.59 10498 25 Kumtsha RDC 18.9293 -3.781 327.23 8718 26 Chicapa Angola 20.5085 -8.122 732.94 12255 27 Luachimo Angola 21.0729 -7.932 704.49 18603 28 Chiumbe Angola 21.0729 -7.932 704.49 18603 29 Lubem	16	Lulua	RDC	22.6688	-7.513	783.37	34247
19 Cassai Angola 21.6575 -11 1041.89 12745 20 Cuango Angola 18.0123 -9.202 819.85 33991 21 Kasaï RDC 17.9453 -3.402 304.92 472206 22 Lubi RDC 23.1643 -6.245 690.03 3420 23 Loange Angola 19.5415 -6.618 527.29 14616 24 Bushimai RDC 23.3041 -6.833 797.59 10498 25 Kumtsha RDC 18.9293 -3.781 327.23 8718 26 Chicapa Angola 20.5085 -8.122 732.94 12255 27 Luachimo Angola 20.7675 -8.122 736.83 14285 28 Chiumbe Angola 21.0729 -7.932 704.49 18603 29 Lubembe Angola 21.0727 -8.158 726.33 20239 30	17	Lokoro	RDC	19.7384	-2.463	315.73	7406
20 Cuango Angola 18.0123 -9.202 819.85 33991 21 Kasaï RDC 17.9453 -3.402 304.92 472206 22 Lubi RDC 23.1643 -6.245 690.03 3420 23 Loange Angola 19.5415 -6.618 527.29 14616 24 Bushimai RDC 23.3041 -6.833 797.59 10498 25 Kumtsha RDC 18.9293 -3.781 327.23 8718 26 Chicapa Angola 20.5085 -8.122 732.94 12255 27 Luachimo Angola 20.7675 -8.122 736.83 14285 28 Chiumbe Angola 21.0729 -7.932 704.49 18603 29 Lubembe Angola 21.0729 -7.932 704.49 18603 30 Kasaï RDC 21.6457 -7.062 660.00 52740 31 Lu	18	Kasaï	RDC	22.3102	-10.57	974.74	21469
21 Kasai RDC 17.9453 -3.402 304.92 472206 22 Lubi RDC 23.1643 -6.245 690.03 3420 23 Loange Angola 19.5415 -6.618 527.29 14616 24 Bushimai RDC 23.3041 -6.833 797.59 10498 25 Kumtsha RDC 18.9293 -3.781 327.23 8718 26 Chicapa Angola 20.5085 -8.122 732.94 12255 27 Luachimo Angola 20.7675 -8.122 736.83 14285 28 Chiumbe Angola 21.0729 -7.932 704.49 18603 29 Lubembe Angola 21.0729 -7.932 704.49 18603 30 Kasaï RDC 21.6475 -7.062 660.00 52740 31 Lubudi RDC 21.6475 -7.062 660.00 52740 31 Lubud	19	Cassai	Angola	21.6575	-11	1041.89	12745
22 Lubi RDC 23.1643 -6.245 690.03 3420 23 Loange Angola 19.5415 -6.618 527.29 14616 24 Bushimai RDC 23.3041 -6.833 797.59 10498 25 Kumtsha RDC 18.9293 -3.781 327.23 8718 26 Chicapa Angola 20.5085 -8.122 732.94 12255 27 Luachimo Angola 20.7675 -8.122 736.83 14285 28 Chiumbe Angola 21.0729 -7.932 704.49 18603 29 Lubembe Angola 21.0729 -7.932 704.49 18603 20 Lubembe Angola 21.4627 -8.158 726.33 20239 30 Kasaï RDC 21.6475 -7.062 660.00 52740 31 Lubudi RDC 22.1571 -4.489 403.88 11649 32 S	20	Cuango	Angola	18.0123	-9.202	819.85	33991
23 Loange Angola 19.5415 -6.618 527.29 14616 24 Bushimai RDC 23.3041 -6.833 797.59 10498 25 Kumtsha RDC 18.9293 -3.781 327.23 8718 26 Chicapa Angola 20.5085 -8.122 732.94 12255 27 Luachimo Angola 20.7675 -8.122 736.83 14285 28 Chiumbe Angola 21.0729 -7.932 704.49 18603 29 Lubembe Angola 21.4627 -8.158 726.33 20239 30 Kasaï RDC 21.6475 -7.062 660.00 52740 31 Lubudi RDC 21.6475 -7.062 660.00 52740 31 Lubudi RDC 17.0176 -7.497 439.79 13900 33 Bakali RDC 17.1864 -5.386 443.34 3401 34 Wam	21	Kasaï	RDC	17.9453	-3.402	304.92	472206
24 Bushimai RDC 23.3041 -6.833 797.59 10498 25 Kumtsha RDC 18.9293 -3.781 327.23 8718 26 Chicapa Angola 20.5085 -8.122 732.94 12255 27 Luachimo Angola 20.7675 -8.122 736.83 14285 28 Chiumbe Angola 21.0729 -7.932 704.49 18603 29 Lubembe Angola 21.0729 -7.932 704.49 18603 29 Lubembe Angola 21.6475 -7.062 660.00 52740 31 Lubudi RDC 21.6475 -7.062 660.00 52740 31 Lubudi RDC 22.1571 -4.489 403.88 11649 32 Sussa RDC 17.0176 -7.497 439.79 13900 33 Bakali RDC 17.1864 -5.386 443.34 3401 34 Wa	22	Lubi	RDC	23.1643	-6.245	690.03	3420
25 Kumtsha RDC 18.9293 -3.781 327.23 8718 26 Chicapa Angola 20.5085 -8.122 732.94 12255 27 Luachimo Angola 20.7675 -8.122 736.83 14285 28 Chiumbe Angola 21.0729 -7.932 704.49 18603 29 Lubembe Angola 21.4627 -8.158 726.33 20239 30 Kasaï RDC 21.6475 -7.062 660.00 52740 31 Lubudi RDC 17.1864 -5.386 443.34 3401 32	23	Loange	Angola	19.5415	-6.618	527.29	14616
26 Chicapa Angola 20.5085 -8.122 732.94 12255 27 Luachimo Angola 20.7675 -8.122 736.83 14285 28 Chiumbe Angola 21.0729 -7.932 704.49 18603 29 Lubembe Angola 21.4627 -8.158 726.33 20239 30 Kasaï RDC 21.6475 -7.062 660.00 52740 31 Lubudi RDC 22.1571 -4.489 403.88 11649 32 Sussa RDC 17.0176 -7.497 439.79 13900 33 Bakali RDC 17.1864 -5.386 443.34 3401 34 Wamba RDC 16.9191 -5.249 394.90 23182 35 Wamba RDC 17.3925 -6.456 511.86 16301 36 Yembesa RDC 18.3881 -5.618 444.92 1943 37 Cuilu	24	Bushimai	RDC	23.3041	-6.833	797.59	10498
27 Luachimo Angola 20.7675 -8.122 736.83 14285 28 Chiumbe Angola 21.0729 -7.932 704.49 18603 29 Lubembe Angola 21.4627 -8.158 726.33 20239 30 Kasaï RDC 21.6475 -7.062 660.00 52740 31 Lubudi RDC 22.1571 -4.489 403.88 11649 32 Sussa RDC 17.0176 -7.497 439.79 13900 33 Bakali RDC 17.1864 -5.386 443.34 3401 34 Wamba RDC 16.9191 -5.249 394.90 23182 35 Wamba RDC 17.3925 -6.456 511.86 16301 36 Yembesa RDC 18.3881 -5.618 444.92 1943 37 Cuilu Angola 19.3332 -7.345 936.92 14658 38 Lulo Angola 17.4645 -9.674 726.38 4334 40 Luiza RDC 17.6821 <td>25</td> <td>Kumtsha</td> <td>RDC</td> <td>18.9293</td> <td>-3.781</td> <td>327.23</td> <td>8718</td>	25	Kumtsha	RDC	18.9293	-3.781	327.23	8718
28 Chiumbe Angola 21.0729 -7.932 704.49 18603 29 Lubembe Angola 21.4627 -8.158 726.33 20239 30 Kasaï RDC 21.6475 -7.062 660.00 52740 31 Lubudi RDC 22.1571 -4.489 403.88 11649 32 Sussa RDC 17.0176 -7.497 439.79 13900 33 Bakali RDC 17.1864 -5.386 443.34 3401 34 Wamba RDC 16.9191 -5.249 394.90 23182 35 Wamba RDC 17.3925 -6.456 511.86 16301 36 Yembesa RDC 17.3925 -6.456 511.86 16301 36 Yembesa RDC 18.3881 -5.618 444.92 1943 37 Cuilu Angola 19.3332 -7.345 936.92 14658 38 Lulo	26	Chicapa	Angola	20.5085	-8.122	732.94	12255
29 Lubembe Angola 21.4627 -8.158 726.33 20239 30 Kasaï RDC 21.6475 -7.062 660.00 52740 31 Lubudi RDC 22.1571 -4.489 403.88 11649 32 Sussa RDC 17.0176 -7.497 439.79 13900 33 Bakali RDC 17.1864 -5.386 443.34 3401 34 Wamba RDC 16.9191 -5.249 394.90 23182 35 Wamba RDC 17.3925 -6.456 511.86 16301 36 Yembesa RDC 17.3925 -6.456 511.86 16301 36 Yembesa RDC 18.3881 -5.618 444.92 1943 37 Cuilu Angola 19.3332 -7.345 936.92 14658 38 Lulo Angola 17.4645 -9.674 726.38 4334 40 Luiza <t< td=""><td>27</td><td>Luachimo</td><td>Angola</td><td>20.7675</td><td>-8.122</td><td>736.83</td><td>14285</td></t<>	27	Luachimo	Angola	20.7675	-8.122	736.83	14285
30 Kasaï RDC 21.6475 -7.062 660.00 52740 31 Lubudi RDC 22.1571 -4.489 403.88 11649 32 Sussa RDC 17.0176 -7.497 439.79 13900 33 Bakali RDC 17.1864 -5.386 443.34 3401 34 Wamba RDC 16.9191 -5.249 394.90 23182 35 Wamba RDC 17.3925 -6.456 511.86 16301 36 Yembesa RDC 18.3881 -5.618 444.92 1943 37 Cuilu Angola 19.3332 -7.345 936.92 14658 38 Lulo Angola 18.4697 -9.187 964.64 8403 39 Lui Angola 17.4645 -9.674 726.38 4334 40 Luiza RDC 17.6821 -4.519 351.06 24408 41 Lukula RDC<	28	Chiumbe	Angola	21.0729	-7.932	704.49	18603
31 Lubudi RDC 22.1571 -4.489 403.88 11649 32 Sussa RDC 17.0176 -7.497 439.79 13900 33 Bakali RDC 17.1864 -5.386 443.34 3401 34 Wamba RDC 16.9191 -5.249 394.90 23182 35 Wamba RDC 17.3925 -6.456 511.86 16301 36 Yembesa RDC 18.3881 -5.618 444.92 1943 37 Cuilu Angola 19.3332 -7.345 936.92 14658 38 Lulo Angola 18.4697 -9.187 964.64 8403 39 Lui Angola 17.4645 -9.674 726.38 4334 40 Luiza RDC 17.6821 -4.519 351.06 24408 41 Lukula RDC 17.9784 -4.113 325.80 24408 43 Dange Ango	29	Lubembe	Angola	21.4627	-8.158	726.33	20239
32 Sussa RDC 17.0176 -7.497 439.79 13900 33 Bakali RDC 17.1864 -5.386 443.34 3401 34 Wamba RDC 16.9191 -5.249 394.90 23182 35 Wamba RDC 17.3925 -6.456 511.86 16301 36 Yembesa RDC 18.3881 -5.618 444.92 1943 37 Cuilu Angola 19.3332 -7.345 936.92 14658 38 Lulo Angola 18.4697 -9.187 964.64 8403 39 Lui Angola 17.4645 -9.674 726.38 4334 40 Luiza RDC 17.6821 -4.519 351.06 24408 41 Lukula RDC 17.9312 -5.416 422.44 2041 42 Lukula RDC 17.9784 -4.113 325.80 24408 43 Dange Angol	30	Kasaï	RDC	21.6475	-7.062	660.00	52740
33 Bakali RDC 17.1864 -5.386 443.34 3401 34 Wamba RDC 16.9191 -5.249 394.90 23182 35 Wamba RDC 17.3925 -6.456 511.86 16301 36 Yembesa RDC 18.3881 -5.618 444.92 1943 37 Cuilu Angola 19.3332 -7.345 936.92 14658 38 Lulo Angola 18.4697 -9.187 964.64 8403 39 Lui Angola 17.4645 -9.674 726.38 4334 40 Luiza RDC 17.6821 -4.519 351.06 24408 41 Lukula RDC 17.9312 -5.416 422.44 2041 42 Lukula RDC 17.9784 -4.113 325.80 24408 43 Dange Angola 15.7753 -7.649 912.68 2083 44 Cuilo Ang	31	Lubudi	RDC	22.1571	-4.489	403.88	11649
34 Wamba RDC 16.9191 -5.249 394.90 23182 35 Wamba RDC 17.3925 -6.456 511.86 16301 36 Yembesa RDC 18.3881 -5.618 444.92 1943 37 Cuilu Angola 19.3332 -7.345 936.92 14658 38 Lulo Angola 18.4697 -9.187 964.64 8403 39 Lui Angola 17.4645 -9.674 726.38 4334 40 Luiza RDC 17.6821 -4.519 351.06 24408 41 Lukula RDC 17.9312 -5.416 422.44 2041 42 Lukula RDC 17.9784 -4.113 325.80 24408 43 Dange Angola 15.7753 -7.649 912.68 2083 44 Cuilo Angola 15.7753 -7.389 925.40 2463 45 chiumbe <td< td=""><td>32</td><td>Sussa</td><td>RDC</td><td>17.0176</td><td>-7.497</td><td>439.79</td><td>13900</td></td<>	32	Sussa	RDC	17.0176	-7.497	439.79	13900
35 Wamba RDC 17.3925 -6.456 511.86 16301 36 Yembesa RDC 18.3881 -5.618 444.92 1943 37 Cuilu Angola 19.3332 -7.345 936.92 14658 38 Lulo Angola 18.4697 -9.187 964.64 8403 39 Lui Angola 17.4645 -9.674 726.38 4334 40 Luiza RDC 17.6821 -4.519 351.06 24408 41 Lukula RDC 17.9312 -5.416 422.44 2041 42 Lukula RDC 17.9784 -4.113 325.80 24408 43 Dange Angola 16.0277 -7.649 912.68 2083 44 Cuilo Angola 15.7753 -7.389 925.40 2463 45 chiumbe Angola 21.1068 -9.659 964.79 9326 46 Lubilash	33	Bakali	RDC	17.1864	-5.386	443.34	3401
36 Yembesa RDC 18.3881 -5.618 444.92 1943 37 Cuilu Angola 19.3332 -7.345 936.92 14658 38 Lulo Angola 18.4697 -9.187 964.64 8403 39 Lui Angola 17.4645 -9.674 726.38 4334 40 Luiza RDC 17.6821 -4.519 351.06 24408 41 Lukula RDC 17.9312 -5.416 422.44 2041 42 Lukula RDC 17.9784 -4.113 325.80 24408 43 Dange Angola 16.0277 -7.649 912.68 2083 44 Cuilo Angola 15.7753 -7.389 925.40 2463 45 chiumbe Angola 21.1068 -9.659 964.79 9326 46 Lubilash RDC 23.8148 -8.966 938.73 10953 47 Buma	34	Wamba	RDC	16.9191	-5.249	394.90	23182
37 Cuilu Angola 19.3332 -7.345 936.92 14658 38 Lulo Angola 18.4697 -9.187 964.64 8403 39 Lui Angola 17.4645 -9.674 726.38 4334 40 Luiza RDC 17.6821 -4.519 351.06 24408 41 Lukula RDC 17.9312 -5.416 422.44 2041 42 Lukula RDC 17.9784 -4.113 325.80 24408 43 Dange Angola 16.0277 -7.649 912.68 2083 44 Cuilo Angola 15.7753 -7.389 925.40 2463 45 chiumbe Angola 21.1068 -9.659 964.79 9326 46 Lubilash RDC 23.8148 -8.966 938.73 10953 47 Buma RDC 17.2344 -3.212 293.28 3292 48 kwango	35	Wamba	RDC	17.3925	-6.456	511.86	16301
38 Lulo Angola 18.4697 -9.187 964.64 8403 39 Lui Angola 17.4645 -9.674 726.38 4334 40 Luiza RDC 17.6821 -4.519 351.06 24408 41 Lukula RDC 17.9312 -5.416 422.44 2041 42 Lukula RDC 17.9784 -4.113 325.80 24408 43 Dange Angola 16.0277 -7.649 912.68 2083 44 Cuilo Angola 15.7753 -7.389 925.40 2463 45 chiumbe Angola 21.1068 -9.659 964.79 9326 46 Lubilash RDC 23.8148 -8.966 938.73 10953 47 Buma RDC 17.2344 -3.212 293.28 3292 48 kwango DRC 18.4733 -7.051 929.82 4881	36	Yembesa	RDC	18.3881	-5.618	444.92	1943
39 Lui Angola 17.4645 -9.674 726.38 4334 40 Luiza RDC 17.6821 -4.519 351.06 24408 41 Lukula RDC 17.9312 -5.416 422.44 2041 42 Lukula RDC 17.9784 -4.113 325.80 24408 43 Dange Angola 16.0277 -7.649 912.68 2083 44 Cuilo Angola 15.7753 -7.389 925.40 2463 45 chiumbe Angola 21.1068 -9.659 964.79 9326 46 Lubilash RDC 23.8148 -8.966 938.73 10953 47 Buma RDC 17.2344 -3.212 293.28 3292 48 kwango DRC 18.4733 -7.051 929.82 4881	37	Cuilu	Angola	19.3332	-7.345	936.92	14658
40 Luiza RDC 17.6821 -4.519 351.06 24408 41 Lukula RDC 17.9312 -5.416 422.44 2041 42 Lukula RDC 17.9784 -4.113 325.80 24408 43 Dange Angola 16.0277 -7.649 912.68 2083 44 Cuilo Angola 15.7753 -7.389 925.40 2463 45 chiumbe Angola 21.1068 -9.659 964.79 9326 46 Lubilash RDC 23.8148 -8.966 938.73 10953 47 Buma RDC 17.2344 -3.212 293.28 3292 48 kwango DRC 18.4733 -7.051 929.82 4881	38	Lulo	Angola	18.4697	-9.187	964.64	8403
41 Lukula RDC 17.9312 -5.416 422.44 2041 42 Lukula RDC 17.9784 -4.113 325.80 24408 43 Dange Angola 16.0277 -7.649 912.68 2083 44 Cuilo Angola 15.7753 -7.389 925.40 2463 45 chiumbe Angola 21.1068 -9.659 964.79 9326 46 Lubilash RDC 23.8148 -8.966 938.73 10953 47 Buma RDC 17.2344 -3.212 293.28 3292 48 kwango DRC 18.4733 -7.051 929.82 4881	39	Lui	Angola	17.4645	-9.674	726.38	4334
42 Lukula RDC 17.9784 -4.113 325.80 24408 43 Dange Angola 16.0277 -7.649 912.68 2083 44 Cuilo Angola 15.7753 -7.389 925.40 2463 45 chiumbe Angola 21.1068 -9.659 964.79 9326 46 Lubilash RDC 23.8148 -8.966 938.73 10953 47 Buma RDC 17.2344 -3.212 293.28 3292 48 kwango DRC 18.4733 -7.051 929.82 4881	40	Luiza	RDC	17.6821	-4.519	351.06	24408
43 Dange Angola 16.0277 -7.649 912.68 2083 44 Cuilo Angola 15.7753 -7.389 925.40 2463 45 chiumbe Angola 21.1068 -9.659 964.79 9326 46 Lubilash RDC 23.8148 -8.966 938.73 10953 47 Buma RDC 17.2344 -3.212 293.28 3292 48 kwango DRC 18.4733 -7.051 929.82 4881	41	Lukula	RDC	17.9312	-5.416	422.44	2041
44 Cuilo Angola 15.7753 -7.389 925.40 2463 45 chiumbe Angola 21.1068 -9.659 964.79 9326 46 Lubilash RDC 23.8148 -8.966 938.73 10953 47 Buma RDC 17.2344 -3.212 293.28 3292 48 kwango DRC 18.4733 -7.051 929.82 4881	42	Lukula	RDC	17.9784	-4.113	325.80	24408
45 chiumbe Angola 21.1068 -9.659 964.79 9326 46 Lubilash RDC 23.8148 -8.966 938.73 10953 47 Buma RDC 17.2344 -3.212 293.28 3292 48 kwango DRC 18.4733 -7.051 929.82 4881	43	Dange	Angola	16.0277	-7.649	912.68	2083
46 Lubilash RDC 23.8148 -8.966 938.73 10953 47 Buma RDC 17.2344 -3.212 293.28 3292 48 kwango DRC 18.4733 -7.051 929.82 4881	44	Cuilo	Angola	15.7753	-7.389	925.40	2463
46 Lubilash RDC 23.8148 -8.966 938.73 10953 47 Buma RDC 17.2344 -3.212 293.28 3292 48 kwango DRC 18.4733 -7.051 929.82 4881	45	chiumbe	Angola	21.1068	-9.659	964.79	9326
47 Buma RDC 17.2344 -3.212 293.28 3292 48 kwango DRC 18.4733 -7.051 929.82 4881	46	Lubilash			-8.966	938.73	
	47	Buma	RDC		-3.212	293.28	3292
	48	kwango	DRC	18.4733	-7.051	929.82	4881
	49	Cuilo	Angola	19.5029	-9.528	1112.83	4914

Tableau 18. Caractéristiques spatiales et géométriques des nouvelles stations de suivi hydrométrique additionnelles identifiées sur la base des usages spécifiques

					Elevation	
No	ID Station	Rivière	Long	Lat	[m]	Priorité
1	Lundimbi_AE	Kwango	18.180	-5.865	528.344	PHE
2	Mayi_Munene_AE	Kasaï	20.960	-6.562	485.281	PHE
3	Mbuji-Mayi_Ville	Bushimain	23.670	-6.096	506.587	Hydrologie urbaine
4	Suivi_Sediment	Lubemba	21.220	-7.027	588.034	Suivi des sédiments
5	Bena_Leka_AE	Lukeni	20.060	-3.333	319.045	PHE
6	Dundo_Ville	Longabhime	20.830	-7.334	621.242	Hydrologie urbaine
7	Ilebo_Ville	Ntshuadi (Kasaï)	20.570	-4.321	357.35	Hydrologie urbaine
8	Kananga_Ville	Lulua	22.310	-5.901	511.083	Hydrologie urbaine
9	Katanda_Agri	Luilu	23.850	-6.366	538.044	Agricole
10	Tshidiba_AE	Anfluent Lulua	22.690	-6.189	676.836	PHE
11	Kikwit_Ville	Kwilu	18.790	-4.994	344.166	Hydrologie urbaine
						Hydrologie
12	Tshikapa_Ville	Kasaï	20.790	-6.418	440.906	urbaine/Synoptique
13	Lac Fwa	Lac Fwa	23.410	-5.713	444.022	Niveau d'eau
	Lac_May_Ndombe_					Contrôle des entrées du
14	Controle	Lac mayi ndombe	18.620	-1.478	294.602	lac
15	Lac_Mukamba	Lac Mukamba	23.050	-5.744	623.073	Niveau d'eau

6. Cadre de gestion du réseau optimal de suivi hydrométéorologique

6.1 Cadre Institutionnel

Du fait de son caractère transversal, le secteur de l'eau connais l'implication de plusieurs acteurs relevant du secteur public et des partenaires au développement dans ce secteur, de la société civile, des confessions religieuses et du secteur privé. Au niveau national, les institutions impliquées à titre principal dans le suivi hydrométéorologique incluent la METTELSAT, la Régie des Voies Aériennes (RVA) et la Régie des Voies Fluviale (RVF). Ces institutions œuvrent sous la tutelle du Ministère des Transports et Voies de Communication. En plus de ces institutions, il en existe celles de recherche et d'autres organes spécialisés du gouvernement qui travaillent dans le secteur du suivi hydrométéorologique. Il s'agit notamment de la Société Nationale d'Electricité (SNEL), de la Compagnie Nationale d'Alimentation en Eau Potable et Assainissement (REGIDESO), du Service d'Hydraulique Rurale (SNHR) du Ministère du Développement Rural, l'Institut National pour l'Etude et la recherche Agronomiques (INERA), et du Centre de Recherche en Ressources en Eau du Bassin du Congo (CRREBaC). Le Tableau ci-après présente les types d'institutions impliquées et leurs rôles. En ce qui concerne le BVK, la METTELSAT et la RVF sont les plus impliquées, accompagnées des institutions de recherche et des services publiques provinciaux. Il est à noter que les organismes de Bassin Versant n'existent pas sur le Bassin Versant du Kasaï.

Tableau 19. Rôles et responsabilités des institutions du suivi hydrométéorologique en RDC

Institution	Rôle potentiel
METTELSAT	L'Agence Nationale de Météorologie et Télédétection par Satellite (METTELSAT) est
	un Service Météorologique et Hydrologique National de la RDC. A ce titre il a la
	charge d'organiser la météorologie, la climatologie, l'hydrologie et domaines
	connexes selon les normes et recommandation de l'OMM en RDC. Elle effectue des
	observations, collecte les données, produit les informations météorologiques et
	hydrologiques sur l'ensemble du pays. La mission de la METTELSAT est de faire le
	suivi de l'évolution des conditions météorologiques et climatiques en vue de la
	planification pour un développement durable.
RVA	En charge des infrastructures aéroportuaires et de la fourniture des services de
	navigation aérienne et effectue des observations, collecte des données
	météorologiques et prévisions aéronautiques. Elle gère 55 aéroports les plus
	importants du pays.
RVF	La principale mission de la RVF est l'aménagement et l'entretien des voies de
	navigation intérieures. Cependant, l'article 4 du décret n°09/60 du 03 décembre
	2009 assigne à la RVF la mission des études hydrographiques, hydrologiques et des
	travaux nécessaires pour assurer la sécurité de la navigation et améliorer la
	navigabilité.
REGIDESO	En charge de l'approvisionnement en eau en milieux urbains
SNHR	En charge de l'approvisionnement en eau en milieux ruraux
INERA	En charge de la recherche et suivi agronomique et s'occupe de ce fait du suivi agro
	météorologique.
CRREBaC	La recherche sur les processus, structures et fonctions des ressources en eau du
	Bassin du Congo, ainsi que les effets des impacts du changement environnemental
	et des aménagements hydrauliques sur les ressources en eau

6.2 Collecte, stockage, traitement et diffusion

En règle générale et pour ce qui est du suivi météorologique, les données synoptiques et climatologiques sont collectées par le moyen de radio émetteur-récepteur en bande latérale unique HF (Radio BLU). En principe, la collecte se fait journellement chaque trois heures de 6 heures à 15 heures temps universel. Cependant, compte tenu des difficultés institutionnelles remarquables, cette pratique n'est plus observée. L'ensemble de données disponibles sont en support papier, elles constituent une banque des données du réseau d'observation des stations météorologiques datant de 1945 jusqu'à ce jour. Les données des quelques stations

sont stockées sur support numérique en format Excel. Le système de traitement des données comprend un ensemble d'activités, dont: la correction des erreurs de transcription en papier, lors de la saisie ou lors de l'observation de ces données. Quelques difficultés accompagnent ce traitement, si bien que l'opération ne se fait avec rigueur que lorsqu'il y a besoin d'une étude ou de production des prévisions météorologiques et climatologiques. La diffusion des données d'informations est souvent sous forme des bulletins de prévisions météorologiques, qui sont transmises aux organes des médias pour la diffusion. La transmission se fait par l'internet.

Au regard du suivi hydrométrique, la collecte des données hydrologiques relative aux hauteurs d'eau est faite au moyen d'un limnimètre avec une lecture par jour entre six (06) heures et sept (07) heures du matin afin d'éviter les fluctuations dues à l'attraction solaire. Cette mesure unique est considérée comme la moyenne journalière, au lieu de 2 ou 3 lectures. Les données journalières obtenues sont transcrites dans des carnets sous format papier (fichiers ou dossiers) et électronique (Base de données sous format Excel) afin de permettre leur traitement, analyse, interprétation et diffusion. Les paramètres caractéristiques traités sont :

- Maximums (mensuels et annuels);
- Minimums (mensuels et annuels);
- Moyennes (mensuelles, annuelles et interannuelles).

L'observation générale démontre que le système de suivi hydrométéorologique sur le bassin versant du Kasaï est caractérisé de nombreuses difficultés, telles que présentées ci-après.

- Les données se trouvent encore éparpillées dans les stations sur des supports-papier, dans des conditions de conservation non sécurisées ;
- Les métadonnées explicatives de l'historiques de stations et leurs instruments n'existent pas;
- Les archives sont constituées d'empilement de données sur papier dans une salle non appropriée.
- L'homogénéité des séries chronologiques n'est pas le seul problème qui se pose. La plupart des stations météorologiques sont situées au niveau des aéroports et endroits menacés d'envahissement par la population. L'environnement physique de ces stations a subi des modifications. Donc la vérification de l'homogénéité du milieu s'impose;
- Les moyennes périodiques, tout comme les normales et les normales climatologiques standards ne sont, ni calculées, encore moins distribuées comme le recommande l'OMM;
- La qualité des données dépend du contrôle des procédures appliquées durant l'acquisition de ces données, la préparation de messages de leur transmission et durant leur traitement. A cet égard, les meilleures pratiques prescrites pour ce faire par l'OMM sont loin d'être suivies.

- Les messages provenant des observations locales sont transmis sporadiquement, au gré de déplacement des voyageurs éventuels qui acceptent de déposer au CMN de Kinshasa-Binza ou à l'aéroport de Ndjili, le colis de rapports en souffrance dans la station.
- Les fiches et imprimés pertinents utiles à l'établissement des rapports périodiques ne sont pas disponibles dans les stations.

6.3 Axes d'interventions prioritaires

La mise en exergue de l'importance du suivi hydrométéorologique en appui au développement socio-économique et la protection de l'environnement ne peut être effective que si les normes de suivi tiennent compte de la densité du réseau d'observation existant, de la prévision, des instruments météorologiques et hydrologiques et des techniques d'information. A ceci, il convient d'affirmer l'importance de mesures fréquentes et précises de différents éléments du système d'observation et de la transmission rapide des données. Tenant compte du contexte stratégique du BVK, et à la suite de l'état des lieux dressé dans le présent document, les axes d'interventions prioritaires listés ci-après peuvent aider à redresser la situation de l'observation hydrométéorologique systématique pour la rendre conforme aux dispositions conventionnelles internationales tout en répondant aux attentes actuelles et potentielles des utilisateurs des produits hydrométéorologiques. Il s'agit de :

- Réhabiliter et moderniser le réseau hydrométéorologique au niveau du Bassin Versant, en restaurant les stations d'observation exploitées jadis, ceci par l'installation de nouveaux équipements pour la collecte des données en temps réel et utiles : échelles d'étiage, appareils d'enregistrements automatiques (limnigraphes, PCD, etc.) selon les normes de l'OMM;
- Renforcer les capacités techniques et humaines des services chargés de la production des données hydrologiques. Ceci requiert la définition de nouvelles stratégies et un plan de renforcement de capacité de personnels;
- Orienter le service vers l'obtention des résultats propices au développement;
- Renforcer la capacité de l'application des observations par satellite de façon à disposer des variables hydro-climatiques essentielles, surtout dans les milieux où l'accès est difficile;
- Disposer des équipements de jaugeage (moulinet hydrométrique OTT, ADCP, kit sédimentologique, etc.) pour la mesure des débits liquide et solide et procéder à l'étalonnage périodique de la courbe de tarage;
- Moderniser le système d'archivage, diffusion des données et du partage de l'information entre les acteurs en recourant aux supports numériques ;
- Mettre à la disposition des utilisateurs des informations nécessaires pour répondre aux besoins présents et futurs;

- Aider les décideurs à la prise des décisions et à la mise en place plus aisée des politiques de gestion intégrée des ressources en eau.
- Promouvoir les connaissances par la recherche et la formation des cadres pour faciliter l'utilisation des données et la mise en application des connaissances acquises;
- Rétablir les procédures de contrôle de la qualité des données ;
- Mettre en place les comités de gestion du bassin versant.

7. Conclusion et recommandations

Depuis plusieurs décennies, le suivi hydrométéorologique dans les pays d'Afrique Centrale et en particulier ceux du bassin du Congo constitue une grande préoccupation. Le réseau quelque peu dense mis en place à l'époque coloniale a connu un véritable déclin et les institutions y afférentes souffrent d'un éventail des problèmes qui ne favorisent pas l'acquisition et le suivi de l'information hydrologique en temps et espace voulu pour le besoin de la gestion de nos ressources en eau. Il est donc opportun de réorganiser le système d'information hydrologique pour une gestion rationnelle des ressources en eau. Le réseau de suivi hydrométéorologique existant dans BVK présente un certain nombre des caractéristiques locales particulières. Il est non uniforme, avec de nombreuses lacunes d'enregistrements, et il ne répond pas aux normes de conception optimale.

Ce travail a consisté à élaborer une approche méthodologique à la conception d'un réseau optimal de suivi hydrométéorologique dans le bassin versant du Kasaï. La méthode hybride et celle des composantes physiographiques ont été retenues pour la conceptualisation et optimisation du réseau hydrométéorologique dans le BVK, et ont eu pour avantage de balancer les forces et les faiblesses des autres méthodes reconnues dans la littérature.

Les critères ci-après ont été retenus pour la conception du ROSHM:

- Les processus hydrologiques dominants et les tendances de variabilité hydroclimatique
- Les usages et le développement des ressources en eau
 - Agglomérations urbaines
 - Périmètres ou potentiel d'irrigation
 - Sites ou potentiel hydroélectrique
 - Biefs navigables
 - Zones minières
- Evènements extrêmes
- Sites des mesures au sol existants

Le réseau de suivi météorologique et climatique conçu tient compte de la localisation des Anciennes Stations installées sur le bassin versant (AS), de Grandes Villes (GV), des Aéroports Principaux (AP), Grandes Plantations (GP) et du gradient d'Elévations Dominantes (ED). Il ressort de ces résultats que les stations obtenues, sont contenues dans la frange d'altitude allant de 291 m à 1394 m; dont 12.4 % de stations sont situées à l'altitude de 200 - 400 m, représentant une superficie de 268614 km² (soit une densité de 0.0104 station/100km²); 24.88 % à l'altitude de 400 - 600 m, représentant une superficie de 539606 km² (soit une densité de 0.0103 station/100km²) ; 22.22% à l'altitude de 600 – 800 m, représentant une superficie de 196422 km² (soit une densité de 0.0254 station/100km²) ; 17.77 % à l'altitude de 800 -1000 m, représentant une superficie de 238565 km² (soit une densité de 0.0167

station/100 km²); 18.66 % à l'altitude de 1000 - 1200 m, représentant une superficie de 249646 km² (soit une densité de 0.0168 station/100 km²); et 4 % à l'altitude de 1200 - 1400 m, représentant une superficie de 84894 km² (soit une densité de 0.0106 station/100 km²) . La distance moyenne entre stations est de 41.4 km et la distance maximale est évaluée à 84.3 km.

En fonction du type et nombre des stations par sous bassin, une pondération a été attribuée à chaque type des stations, ce qui a abouti à optimiser cinq catégories des stations, incluant : la catégorie Primaire, Prioritaire, Très Prioritaire, Assez Prioritaire, Extrêmement Prioritaire.

Tenant compte de l'hypothèse selon laquelle les attributs physiques du bassin tels que le climat, la topographie, la végétation, les types de sol et la géologie exercent un contrôle important sur la réponse hydrologique du bassin, il convient de déduire que des zones présentant des caractéristiques physiographiques similaires peuvent conduire à des réponses hydrologiques similaires. Ainsi, six groupes homogènes des caractéristiques physiques ont été utilisés pour optimiser le réseau de suivi hydrométrique du bassin versant du Kasaï. Ces groupes contiennent les caractéristiques telles que le gradient d'élévation et de pente, les biefs principaux des cours d'eau, des sites de jaugeage existants, et des occupations de terres (zones minières, zones agricoles, agglomérations urbaines, lacs naturels), ce qui résulte en un nombre de 131 stations retenues.

Initialement, il était retenu dans les Termes de Reference que l'étape de l'état des lieux devrait être précédée du rapport de la méthodologie. Cependant, il s'est avéré que l'état des lieux devrait procéder des investigations sur terrain en vue de la collecte de données (primaires, secondaires et tertiaires) et de la priorisation des besoins nécessaires à la conception du ROSHM. Toutefois, il faut noter que le niveau des travaux de terrain décris dans les Termes de Référence n'est pas approprié en terme des détails requis pour déterminer l'emplacement final des stations de suivi hydrométéorologique et climatique tels que conçu dans ce rapport. Il est donc recommandé de programmer et budgétiser cet aspect de travail en vue de valider les sites au sol, en rapport avec les critères préétablis. Tel est le cas des critères ci-après pour les stations de suivi hydrométrique:

- Le cours général de la rivière doit être rectiligne environ 10 fois la largeur du cours d'eau, en amont et en aval du site de jaugeage;
- Le site de jaugeage doit être suffisamment éloigné en amont de la confluence avec un autre flux pour éviter toute influence variable d'un autre cours d'eau;
- Le site de jaugeage doit être suffisamment éloigné en amont et en aval des sites vulnérables aux effets de marée;
- L'écoulement total est déterminé pour la section de jaugeage, et aucun autre écoulement a toute hauteur ou flux souterrain, ne passe en travers de cette section;
- Le lit du cours d'eau est relativement exempt de végétation aquatique. Les banques sont stables, assez hautes pour contenir les inondations et sans broussailles;
- Il y a formation d'un pool en amont de l'emplacement de la station afin de d'assurer l'enregistrement des hauteurs d'eau durant l'étiage et d'éviter des vitesses élevées à

- l'extrémité amont des prises d'entrée de l'enregistreur des hauteurs d'eau ou l'orifice du manomètre pendant les périodes de crue.
- Le site d'installation ne doit pas être affecté par un affouillement intense et le remplissage, ce qui est assuré en maintenant une pente constante en amont et en aval du site, étant donné que le site du jaugeage est situé dans une partie assez droite de la rivière. Une pente très faible d'écoulement est préférable.

La majorité des critères de conception du réseau hydrologique ne peuvent être validées qu'après des observations sur site. La procédure SIG ne peut nommer que certains postes candidats en fonction de l'ensemble des critères 1, 2 et 7 ou 1, 2, 5, 6 et 7; le potentiel du La procédure SIG est strictement affectée par la qualité des ressources disponibles.

Bibliographie

Boiten, W. 2000. **Hydrometry**, Taylor and Francis, Philadelphia, Pa

De Rover, N. 1961. Histoire du Congo notre pays, Manuel d'enseignement d'histoire.

Bureau de l'Enseignement Catholique, Léopoldville. 96 pages.

Fekete, B.M., Vorosmarty, C.J., Grabs, W., 1999. Global, composite runoff fields based on observed river discharge and simulated water balances, GRDC Report

22, Global Runoff Data Center, Koblenz, Germany.

Lempicka, M., 1971. Bilan hydrique du bassin du fleuve Zaïre. I : Ecoulement du bassin 1950-1959. Office National de la Recherche et du Développement, Kinshasa, République Démocratique du Congo.

OMM, 1994. Guide to Hydrological Practices, 5th ed., WMO Publ., 168

PNUD, 2009. Profil résumé pauvreté et conditions de vie des ménages des provinces

de la RDC.

The Congo River, Water Resour. Res., 50, doi: 10.1002/2013WR014310

Tshimanga, R.M., Hughes, D.A., 2012. Climate change and impacts on the hydrology of the Congo Basin: the case of the northern sub-basins of the Oubangui and Sangha Rivers. *Physics and Chemistry of the Earth 50–52 (2012) 72–83*

Tshimanga, R.M., Hughes, D.A., 2014. Basin-scale performance of a semidistributed rainfall-runoff model for hydrological predictions and water resources assessment of large rivers:

Yin, X.G., Gruber, A. 2010. Validation of the abrupt change in GPCP precipitation in the Congo River Basin, Internat. J. Climatol., 30(1), 110-119

Les publications de l'Ingénieur DEVROEY dont le travail a été interrompu en 1960 à l''indépendance du pays.